Блок питания из энергосберегающей лампы своими руками

Испытание

Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:

  1. Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
  2. К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
  3. Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.

Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.

Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 60 0 С, то их придется установить на радиаторы.

В качестве радиатора можно использовать как заводской радиатор, что будет наиболее верным решением, так и алюминиевую пластину, толщиной не менее 4 мм и площадью 30 кв.см. Под транзисторы необходимо подложить слюдяную прокладку, крепить их к радиатору нужно с помощью винтов с изолирующими втулками и шайбами.

Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Как происходит зажигание

Падающее на динистор напряжение приводит к формированию импульса, поступающего на транзистор и приводящего к открытию элемента. Как только запуск будет выполнен, цепь блокируется диодным мостом. В момент открытия транзистора происходит зарядка конденсатора, предотвращающего повторное открытие динистора.

Транзистор оказывает действие на трансформатор из ферритового кольца с тремя обмотками в несколько рядов. Через резонансный контур и конденсатор подается напряжение на нити.

Как только появляется свечение в трубке, оно характеризуется резонансной частотой, определяемой емкостным конденсатором. При зажигании напряжение достигает 600 В (в момент запуска значение в 4–5 раз выше среднего), поэтому необходимо следить за целостностью и герметичностью колбы. Если это игнорировать, то транзисторы будут повреждены.

Когда газ в колбе полностью ионизируется, происходит шунтирование конденсатора с наибольшей емкостью. Снижается частота, управление переходит ко второму конденсатору. Уменьшается напряжение до значения, достаточного для поддержания свечения лампы. Катод и анод меняются местами, что гарантирует бесперебойное функционирование электронной схемы и при необходимости упрощает ремонт.

Импульсный блок и его назначение

С обоих концов этой трубки установлены электроды, катод и анод. После подачи на них тока, они начинают нагреваться. Достигнув необходимой температуры они выпускают электроны, которые ударяются об молекулы ртути и та начинает излучать ультрафиолетовый свет.

Ультрафиолет конвертируется в видимый для человеческого глаза спектр благодаря люминофору, который находится в трубке. Таким образом, лампа зажигается спустя некоторое время. Обычно скорость загорания лампы зависит от срока её выработки. Чем дольше лампа работала, тем больше будет промежуток между включением и полным зажиганием.

Чтобы понять предназначение каждой из составляющих ибп, следует разобрать по отдельности какие функции они выполняют:

  • R0 – работает ограничителем и предохранителем блока питания. Он стабилизирует и останавливает излишний поток питания тока в момент включения, который протекает через диоды выпрямляющего устройства.
  • VD1, VD2, VD3, VD4 – используются как мостовые выпрямители.
  • L0, C0 – фильтруют подачу тока и делают её без перепадов.
  • R1, C1, VD8 и VD2 – запускная цепь преобразователей. Процесс запуска происходит следующим образом. Источник зарядки конденсатора С1 является первый резистор. После того как конденсатор набирает такой мощности, что способен пробить динистор VD2, он самостоятельно открывается и попутно открывает транзистор, что вызывает автоколебание в схеме. Затем прямоугольный импульс направляется на катод диода VD8 и возникающий минусовый показатель закрывает второй динистор.
  • R2, C11, C8 – делают стартовый процесс преобразователей более лёгким.
  • R7, R8 – Делают закрытие транзисторов более эффективным.
  • R6, R5 – создают границы для тока на базах каждого транзистора.
  • R4, R3 – работают как предохранители в случае резкого повышения напряжения в транзисторах.
  • VD7 VD6 – предохраняют каждый транзистор бп от возвратного тока.
  • TV1 – обратный трансформатор для связи.
  • L5 – дроссель балластный.
  • C4, C6 – конденсаторы разделения, где всё напряжение и питание разделяется пополам.
  • TV2 – трансформатор для создания импульсов.
  • VD14, VD15 – диоды, работающие от импульсов.
  • C9, C10 – фильтрующие конденсаторы.

Благодаря правильной расстановке и тщательному подбору характеристик всех перечисленных составляющих, мы и получаем блок питания необходимой нам мощности для дальнейшего использования.

Переделка блока

Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.

Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным

Определение мощности

Вычисление мощности осуществляется согласно формуле:

В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:

  • напряжение — 12 В;
  • сила тока — 2 А.

Вычисляем мощность:

P = 2 × 12 = 24 Вт.

Конечный параметр мощности будет больше — примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.

Новые компоненты

На схеме, представленной далее, показан порядок добавления новых деталей. Все они обозначены красным цветом.

В число новых электронных компонентов входят:

  • диодный мост VD14-VD17;
  • 2 конденсатора C9 и C10;
  • обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.

Дополнительная обмотка выполняет еще одну важную функцию — является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.

READ  Как заполнить удостоверение по электробезопасности нового образца

Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:

  1. Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
  2. Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
  3. Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
  4. Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
  5. Выясняем нужное количество витков для постоянной обмотки.

Более подробно порядок расчета показан ниже.

Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.

Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое

Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений

Такую ленту используют сантехники.

Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов

Ремонт лампы.

Если перегорела хотя бы одна из спиралей,
колбу выбрасываем, если нет, то она рабочая, и не работает схема.

В некоторых случаях, можно восстановить
работоспособность лампы со сгоревшей спиралью, замкнув её.Как вариант —
замкнуть резистором на 8-10 Oм большой мощности и убрать шунтирующий
данную спираль диод, если таковой имеется. Если
перегорает предохранитель(иногда он бывает в виде резистора), что обычно
случается при пробое конденсатора C3, вероятно неисправными оказываются
транзисторы Q1, Q2,как правило, используются транзисторы MJE13003 и
резисторы R1, R2, R3,R5. Вместо перегоревшего предохранителя можно
установить резистор на несколько Ом.

Перед сборкой в цоколе лампы необходимо просверлить
вентиляционные отверстия, чтобы сделать температурный режим работы более
мягким. Ряд отверстий вокруг места крепления трубки лампы служит для
отвода тепла от самой трубки. Ряд отверстий ближе к металлической части
цоколя служит для отвода тепла от компонентов балласта. Так-же можно
сделать ещё один ряд отверстий — посередине, большего
диаметра.

Данная модернизация энергосберегающей лампы
поможет существенно продлить срок её службы. Не стоит устанавливать
модернизированную лампу в места повышенной влажности (например, ванную
комнату).

Наиболее благоприятные условия для работы
энергосберегающих лампочек — в открытом виде, либо — широком плафоне или
плафоне с вентиляцией, цоколем вверх.

Как сделать светодиодную лампу

Необходимые материалы

Для того чтобы переделать энергосберегающую лампочку в светодиодную своими руками, необходимо иметь при себе следующий список материалов:

  1. Сгоревшую, вышедшую из строя лампу.
  2. Небольшой кусок стеклотекстолита для соединения деталей между собой. Если есть другие идеи (кроме пайки), можете воспользоваться своей для решения вопроса, как крепить светодиоды.
  3. Комплект радиоэлементов, соответствующих определённой схеме, в том числе светодиоды. Специалисты советуют выбирать для сборки светодиодной лампочки своими руками обычные детали, которые в большом ассортименте представлены на каждом радиорынке, где их стоимость существенно ниже.
  4. Конденсатор объёмом 0,022 Mf, напряжение в котором составляет 400 V, одно сопротивление рассчитано на 1 мОм и пара сопротивлений на 200 Ом.
  5. Светодиоды — дешевле выпаять в нужной численности посредством ленты.

Изготовление схемы

Процесс создания схемы своими руками начинается с вырезания из текстолита окружности, диаметр которой равен 30 мм. Далее нанесите на круге дорожки, хорошо справляется с этой задачей лак для покраски ногтей. После покрытия одного слоя, отставьте деталь в сторону до тех пор, пока она полностью не высохнет.

В это время можно заняться химией, а именно своими руками изготовить массу, растворяющую медь. Для этого следует смешать медный купорос и обычную кухонную соль в соотношении 1:2. Обязательно добавьте небольшой объём тёплой воды (но не горячей!) и в полученную смесь окуните будущую плату. Уже через сутки вы заметите, как медь исчезла с текстолитового круга, осталась только та часть, которая была обработана лаком.

На завершающем этапе производится пайка. Однако прежде чем переходить к этой фазе, воспользуйтесь специальным растворителем и избавьтесь от слоя лака. Затем пролужите имеющиеся дорожки.

Возьмите миллиметровое сверло и на участках фиксации элементов сделайте отверстия. Наконец переходите к полноценной пайке схемы. Если вы не новичок в работе с паяльником и имеете определённые навыки, для создания светодиодной лампочки с напряжением 220 V своими руками, точнее, платы её драйвера, достаточно выделить 30 свободных минут.

Процесс сборки не обходится без разбора . Пропилите полотнищем по металлу периметр на самом конце пластика. Вытащите все внутренние детали, оставьте только провода, исходящие от цокольной части старого светильника. Снова вооружитесь паяльником и зафиксируйте плату к этим проводам.

Закрепите схему, оснащённую светодиодами, на внутренней поверхности пластика. Перед окончательной поклейкой включите лампу, если она работает — воспользуйтесь термоклеем.

Как обойтись без пайки

Некоторых может не устраивать пайка, в этом случае в качестве альтернативы драйвер для изделия заменяется полноценным блоком питания, предназначенным для фиксации и работы светодиодной ленты. Именно за счёт применения целого куска ленты, а не её отдельных отрезков, пайка и глобальная переделка не требуются.

С чем могут возникнуть проблемы? С размерами блока питания. Здесь понадобится либо переделать электропроводку от А до Я (освещение здания сводится к одной ветке), либо каждый светильник или ряд изделий запитать другим трансформатором. Если дом оснащён точечными осветительными приборами, можно выделить из цепи самый первый и поместить перед ним блок питания, после чего вместо ламп на 220 V установить самодельные светодиодные модели 12 V.

Как собрать лампочки

Сборка освещающих изделий своими руками осуществляется из пластиковых труб, порезанных на отдельные отрезки. По сторонам труб с помощью паяльника закрепляется светодиодная лента, обязательно сверьтесь с параллельной схемой. На конце пучка проводов разместите два штырька, выступающих в качестве цоколя.

Если светильники оснащены традиционным патроном для фиксации лампы, процесс упрощается в разы — достаточно модернизировать старые энергосберегающие приборы, причём применять внутренние платы уже нет необходимости. Как и в предыдущий раз, образец разбирается, а все «внутренности», кроме проводов цоколя, изымаются. Колпачок, из которого выходили люминесцентные трубки, закрывается цилиндром, выполненным из пластика, на котором фиксируются участки светодиодной ленты. Эти ленты подключаются к проводам из цоколя.

При подключении учитывайте «+» и «-». Плюс желательно припаять к нижней составляющей цоколя. Если подключение не дало результатов, разрешить проблему можно, переподключив выход блока питания к проводам.

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

READ  Установка и подключение светодиодного прожектора своими руками

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Строение и принцип работы энергосберегающей лампы

Строение энергосберегающей лампы

Чтобы понять, чем может быть полезна энергосберегающая лампа, рассмотрим ее строение.
Конструкция лампы состоит из следующих составных частей:

  1. Герметичной стеклянной трубки (колбы), внутри покрытой люминофорным составом. Колба заполнена инертным газом (аргоном) и парами ртути.
  2. Пластикового корпуса, изготовленного из негорючего материала.
  3. Небольшой электронной платы (электронным балластом) с пускорегулирующим аппаратом (ПРА), который отвечает за запуск и исключает мерцание прибора. ПРА современных приборов оснащен фильтром, защищающим лампу от сетевых помех.
  4. Предохранитель, защищающий компоненты платы от скачков напряжения, которые могут вызвать возгорание прибора.
  5. Корпуса – в нем «упакованы» ПРА, предохранитель и соединительные провода. На корпусе размещают маркировку, которая содержит информацию о напряжении, мощности и цветовой температуре.
  6. Цоколя, обеспечивающего контакт лампы с электропитанием (самые распространенные цоколи – Е14, Е27, GU10, G5.3).

К колбе лампы подсоединены две спирали (электрода), которые под действием тока раскаляются и испускают со своей поверхности электроны. В результате взаимодействия электронов с парами ртути в колбе возникает тлеющий заряд, «рождающий» УФ-излучение. Воздействуя на люминофор, ультрафиолет «заставляет» лампу светиться. Цветовая температура «экономки» определяется химическим составом люминофора.

Рассчитываем ёмкость необходимого напряжения

Для экономии используют конденсаторы с маленьким показателем ёмкости. Именно от них будет зависеть показатель пульсации входящего напряжения. Для снижения пульсации, необходимо увеличивать объём конденсаторов тоже делается для увеличения показателя пульсации только в обратном порядке.

Для снижения размеров и улучшения компактности, возможно, применять конденсаторы на электролитах.
К примеру, можно использовать такие конденсаторы, которые вмонтированы в фототехнику. Они обладают ёмкостью 100µF х 350V.

Чтобы обеспечить бп показателем двадцать ватт, достаточно использовать стандартную схему от энергосберегающих светильников и вовсе не наматывая дополнительной намотки на трансформаторы. В случае, когда дроссель обладает свободным пространством и может дополнительно уместить витки, можно их добавить.

Таким образом, следует добавить два-три десятка витков обмотки, чтобы была возможность подзаряжать мелкие устройства или использовать ибп как усилитель для техники.

Схема блока питания на 20 ватт

Если вам требуется более эффективное увеличение показателя мощности, можно использовать самый простой провод из меди, покрытый лаком. Он специально предназначен для обмотки. Убедитесь что изоляция на стандартной обмотке дросселя достаточно качественная, так как эта часть будет находиться под значением входящего тока. Также следует оградить её от вторичных витков с помощью бумажной изоляцией.

Действующая модель БП мощность – 20 Ватт.

Для изоляции используем специальный картон толщиной 0.05 миллиметра или 0.1 миллиметра. В первом случае необходимо два слова, во втором достаточно одного. Сечение обмоточного провода используем из максимального больших, количество витков будет подбирать методом проб. Обычно витков необходимо достаточно мало.

Уменьшение поперечного диаметра используемого провода конечно увеличит численность витков, но на мощность это повлияет только в минус.

Чтобы иметь возможность поднять мощность бп до сотни ватт, необходимо дополнительно докрутить импульсный трансформатор и расширить ёмкость фильтровочного конденсатора до 100 фарад.

Схема 100 ватт БП

Чтобы облегчить нагрузку и уменьшить температуру транзисторов, к ним следует добавить радиаторы для охлаждения. При такой конструкции, КПД получится в районе девяноста процентов.

Следует подключить транзистор 13003

К электронному балласту бп следует подключить транзистор 13003, который способен закрепляться с помощью фасонной пружины. Они выгодны тем, что с ними нет необходимости устанавливать прокладку из-за отсутствия металлических площадок. Конечно, их теплоотдача значительно хуже.

Лучше всего проводить закрепления с помощью винтов М2.5, с заранее установленной изоляцией. Также возможно использовать термопасту, которая не передаёт напряжение сети.

Подключение к сети 220 вольт

Подключение происходит с помощью лампы накаливания. Она будет служить защитным механизмом и подключается перед блоком питания.

В этом случае, лампа служит балластом, который имеет нелинейный показатель и отлично предохраняет ибп от неисправной работы сети. Значение мощности лампы необходимо подбирать таким же образом, как и мощность самого импульсного блока питания.

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. http://сайт/

Расширяем возможности

Если вам нужен более мощный блок питания, вам опять-таки может пригодиться данная схема. Однако чтобы добиться необходимых мощностей, не обойтись без некоторых конструкционных изменений. Так нужно будет дополнить лампочный блок распределительным трансформатором да парой выпрямителей.
Многие радиолюбители знают, что найти подходящий трансформатор – дело не простое. В данном случае можно подобрать подходящий компонент в разборках старых компьютеров или телевизоров.
Можно конечно попытаться намотать импульсный трансформатор своими руками. Для этого на основу из ферритового магнитопровода в виде кольца — нужно навить определённое количество витков толстого медного провода. По опыту – для получения зарядки на 50 Вт нужно брать кольцо, диаметром порядка 28 мм. Для указанной мощности идеально подойдёт провод, диаметром 0,35 мм.
Главная сложность – подобрать нужно количество витков в трансформаторе. Это можно сделать как опытным путём – поочерёдно выполняя навивку и тестируя показатели, добиваясь нужных результатов по мощности. Также для упрощения просчётов есть масса программных средств, у каждого свои преимущества и недостатки. Тут кому что удобнее.
Для нашего примера расчётным нормативом — является 108 витков, по факту же помещается чуть больше 110. Располагайте витки равномерно по всему кольцу, чтобы получить максимальную мощность. Не забудьте сделать прокладку между ферритовым кольцом и проводом, чтобы исключить возможность пробоя.

Витки в трансформаторе

Данная работа – монотонная, кропотливая и длительная, и далеко не каждый захочет потратить вечер на намотку. Так что лучше всё-таки заранее запастись необходимой комплектующей серийного производства.
На фото ниже приведены готовые трансформаторы, в сравнении с самодельным «бубликом». О надёжности и пределах прочности моделей, произведённых заводским способом, и говорить не приходится. Поэтому, если есть возможность, используйте именно их, особенно если делаете зарядку для сложных электроприборов.

Трансформаторы

Полученный трансформатор нужно подсоединить к плате, добытой из лампочки. Один из вариантов подключения представлен на схеме ниже.

Подробная схема ИБП

Дополнительно придётся установить пару импульсных диодов (VD14 и VD15). На входной мостовой выпрямитель не лишним будет поставить диоды VD1-VD4 большей мощности. Входной дроссель также желательно перемотать проводом большего диаметра (на схеме он означен как L0). Если транзистор выдаёт недостаточное усиление токов – замените резисторы R5 и R6 на модели с меньшим номинальным сопротивлением. Возможно, нужно будет также нарастить мощности резисторов эмиттерной и базовой цепях.Рекомендуем на всех этапах сборки делать измерения токов, напряжения, частоты и температуры. По мере выявления проблем с тем или иным узлом, нужно вносить соответствующие дополнения, обеспечивающие бесперебойную работу схемы. Универсальных рецептов нет, так как прагматичные китайцы, в целях экономии нередко заменяют дорогостоящие радиодетали дешёвыми аналогами, и как ни бейся – сборка не работает. Так что этот способ использования лампочного содержимого скорее подходит для более продвинутых радиолюбителей.

READ  Ремонт дрели своими руками

Конечно, если Вы новичок и не можете точно просчитать всё: количество витков в дросселе или трансформаторе, и предотвратить возможные скачки напряжения – не советуем использовать такие самодельные блоки питания из ламп для зарядки устройств с «тонкой» сложной электроникой, типа смартфонов. Из-за скачков напряжения или неподходящей частоты — они могут быстро прийти в негодность.Такой импульсный источник больше подойдет для использования вкупе со светодиодными лентами или лампами дневного света, у которых нет блока управления, либо с простыми электроприборами. Он также сможет служить источником энергии для любых других ваших радиоэлектронных самоделок. Даже если первый опыт подключения окажется неудачным –будет не так мучительно больно и обидно. Начните лучше с самых простых вариантов. Пробуйте, но не забывайте – безопасность в этом деле – превыше всего!

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.

Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.

Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.

Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.

Принцип работы и устройство энергосберегающей лампы

КЛЛ состоит из стеклянной колбы полого типа, внутренняя часть которой заполнена парами ртути. При подаче электрического тока между электродами образуется дуговой разряд, связанный с пусковым конденсатором. За счет этого формируется ультрафиолетовое излучение, спектр которого невидим для человеческого глаза. Чтобы преобразовать свечение в видимый свет, внутренние стенки покрываются люминофором, гарантирующим яркое свечение. Если сравнить с лампой накаливания одинакового энергопотребления, то световая отдача будет существенно выше. Стоимость прибора зависит от того, из чего состоит люминофор.

Недостатком энергосберегающих ламп является тот факт, что их нельзя напрямую подключать к сети питания на 220 В. Находящиеся в них в выключенном состоянии пары ртути имеют высокое сопротивление, поэтому для формирования разряда нужен импульс с большим напряжением. После образования разряда сопротивление становится отрицательным. Если в схеме нет защитных элементов, то это приведет к короткому замыканию. В трубчатых приборах применяют электромагнитный балласт, устанавливаемый непосредственно в светильник.

Подготовительные работы

В качестве примера — ниже приведена схема люминесцентной лампочки Vitoone, но принципиально состав плат от разных производителей отличается не сильно. В данном случае представлена лампочка достаточной мощности – 25 ватт, из неё может получиться отличный зарядный блок на 12 В.

Схема лампы Vitoone 25W

Сборка блока питания

Красным цветом на схеме обозначен осветительный узел (т.е. колба с нитями накала). Если нити в нём перегорели, тогда эта часть лампочки нам больше не понадобится, и можно смело откусить контакты от платы. Если лампочка всё же горела перед поломкой, хоть и тускло, можно потом попытаться реанимировать её на какое-то время, подсоединив к рабочей схеме с другого изделия.
Но речь сейчас не об этом. Наша цель — создать блок питания с балласта, добытого из лампочки. Итак, удаляем все что находится между точками А и А´ на приведённой выше схеме.
Для блока питания небольшой мощности (приблизительно равной исходной у лампочки-донора) достаточно лишь небольшой переделки. На месте удалённого лампочного узла нужно установить перемычку. Для этого просто примотайте новый отрезок провода к освободившимся штырькам — на месте крепления бывших нитей накала энергосберегающей лампочки (или к отверстиям под них).

В принципе Вы можете попытаться немного повысить генерируемую мощность, снабдив дополнительной (вторичной) навивкой уже имеющийся на плате дроссель (он обозначен на схеме как L5). Таким образом, его родная (заводская) навивка становится первичной, а ещё один слой вторичной — обеспечивает тот самый резерв мощности. И опять же, его можно регулировать количеством витков или толщиной навиваемого провода.

Подключение блока питания

Но, понятно, намного нарастить исходные мощности не удастся. Всё упирается в размеры «рамки» вокруг ферритов – они весьма ограничены, т.к. изначально предполагались для использования в компактных лампах. Зачастую удаётся нанести витки только в один слой, восьми – десяти для начала будет достаточно.Старайтесь накладывать их равномерно по всей площади феррита, чтобы получить максимальную производительность. Такие системы очень чувствительны к качеству навивки и будут неравномерно нагреваться, и в конце-концов придут в негодность.
Рекомендуем на время проведения работ выпаять со схемы дроссель, так как иначе выполнить намотку будет нелегко. Очистите его от заводского клея (смол, плёнок и т.д.). Визуально оцените состояние провода первичной намотки, проверьте целостность феррита. Так как если они повреждены, нет смысла в дальнейшем продолжать с ним работать.Перед началом вторичной намотки проложите по верху первичной обмотки полоску бумаги или электрокартона, чтобы исключить вероятность пробоя. Липкая лента в данном случае не самый лучший вариант, так как со временем клеевой состав оказывается на проводах и ведёт к коррозии.
Схема доработанной платы из лампочки будет выглядеть так

Схема доработаной платы из лампочки

Многие не понаслышке знают, что делать обмотку трансформатора своими руками то ещё удовольствие. Это скорее занятие для усидчивых. В зависимости от количества слоёв на это можно потратить от пары часов, до целого вечера.Ввиду ограниченности пространства дроссельного окна для создания вторичной обмотки рекомендуем использовать лакированный медный кабель, сечением 0,5 мм. Потому что проводам в изоляции там просто не хватит места для навивки сколько-нибудь значимого количества витков.
Если надумаете снять изоляцию с имеющегося у вас провода, не пользуйтесь острым ножом, т.к. после нарушения целостности внешнего слоя обмотки на надёжность такой системы придётся только надеяться.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: