Типы конденсаторов: классификация по характеристикам и функциональному назначению

Подразделения конденсаторов по возможности изменения емкости

 По данному параметру детали этой категории делят на:

  • постоянные;
  • переменные;
  • подстроечные.

Специфические названия определяют главные конструктивные особенности, целевое назначение. Типовой постоянный конденсатор создают из проводящих обкладок, свернутых в рулон для уменьшения габаритов. Между ними устанавливают диэлектрик. Сборку помещают в металлический корпус или заливают полимером для обеспечения необходимых параметров защищенности.

Радиальный конденсатор с электролитическим наполнителем

В переменных и подстроечных моделях применяют наборы из пластин с механическим приводом. Изменением положения рабочих элементов устанавливают необходимое значение емкости. Каждое изделие рассчитано на определенный диапазон рабочих параметров. Такие конденсаторы применяют для точной настройки колебательного контура. Их устанавливают в радиоэлектронных блоках, чтобы регулировать отдельные рабочие параметры в процессе эксплуатации.

Виды конденсаторов

Конденсаторы — очень обширное понятие. Они различаются между собой по целому ряду параметров: по типу диэлектрика: вакуумный, газообразный, жидкий, электролитический, твердый неорганический или органический; по емкости: переменные, постоянные, подстроечные; по форме: цилиндрические, сферические, плоские.

Также конденсаторы могут различаться по типу применения. Одни из них являются общими, это говорит о том, что их можно применять в любых устройствах. Стоит отметить, что это низковольтные конденсаторы. А есть специальные. К ним относятся импульсные, дозиметрические, подавляющие помехи, высоковольтные.

При том этот список можно долго продолжать, так как регулярно появляются новые виды конденсаторов. Сейчас популярны танталы в цепях постоянного тока. Они присутствуют на платах ПК нашего времени, в телефонах, планшетах и т.д. Кроме того, переносные радиопередатчики также не обходятся без них.

Не так давно появился новый вид — ионистор. Их отличительная черта — длительное хранение заряда. Эти конденсаторы хороши своим длительным сроком эксплуатации и износостойкостью, способной выдержать множество циклов зарядки. Сейчас этот вид широко применяется для резервного питания схем памяти.

Электролитические конденсаторы: типы и предназначение

Типы электролитических конденсаторов представлены широким рядом. Они бывают:

  • полимерными;
  • полимерными радиальными;
  • с низким уровнем утечки тока;
  • стандартной конфигурации;
  • с широким диапазоном температур;
  • миниатюрными;
  • неполярными;
  • с наличием жесткого вывода;
  • низкоимпедансными.

Где применяются электролитические конденсаторы? Типы конденсаторов из алюминия используются в разных радиотехнических устройствах, деталях компьютера, периферийных приборах типа принтеров, графических устройствах и сканерах. Также они применяются в строительном оборудовании, промышленных приборах для измерения, в сфере вооружения и космоса.

Электролитические конденсаторы из алюминия

Основой электролитических конденсаторов из алюминия являются две тонкие скрученные алюминиевые полоски. Между ними расположена бумага, содержащая электролит. Показатель емкости этого прибора равен 0,1-100 000 uF. Кстати, в этом и заключается его основное преимущество перед другими видами. Максимальное напряжение равно 500 V.

К минусам относятся повышенная утечка тока и уменьшение емкости с возрастанием частоты. Поэтому в платах часто вместе с электролитическим конденсатором используется и керамический.

Также следует отметить, что данный тип отличается полярностью. Это означает, что вывод устройства с минусовым показателем находится под отрицательным напряжением, в отличие от противоположного вывода. Если не придерживаться этого правила, то скорее всего, приспособление выйдет из строя. Поэтому рекомендуется применять его в цепях с наличием постоянного или пульсирующего тока, но ни в коем случае не переменного.

Где и как используются конденсаторы?

Перед тем как начать рассказывать об области применения конденсаторов, вспомним, что конденсатор это — две пластины, разделенные диэлектриком. Поэтому ток через конденсатор (в первом приближении) идти не может. Однако в цепи с конденсатором могут происходить процессы заряд и разряда. И во время этих процессов в цепи будут протекать токи заряда или разряда.

Таким образом, если переменное напряжение будет приложено  к цепи с конденсатором, в ней будет протекать переменный ток. Поэтому конденсатор можно охарактеризовать такой величиной как емкостное сопротивление (обозначается в технической литературе как Хс).

Емкостное сопротивление зависит от ёмкости конденсатора и частоты приложенного напряжения. Чем ёмкость и частота больше, тем меньше емкостное сопротивление. На этих эффектах основано применение конденсаторов в схемах фильтрации источников питания.

В компьютерных блоках питания для получения постоянных напряжений +3,3, +5, и +12 В используется двухполупериодная схема выпрямление с двумя диодами и фильтрующим конденсатором. Без конденсатора на нагрузке будет пульсирующее напряжение одной полярности.

Источник постоянного напряжения можно представить в виде эквивалентной схемы из генератора и двух сопротивлений, где R1 — это внутреннее сопротивление выпрямителя, а R2 — емкостное сопротивление конденсатора.

Генератор – это сумма постоянного и переменного напряжений (пульсирующее напряжение содержит в себе постоянную и переменную составляющую).

Таким образом, сигнал с генератора подается на частотно-зависимый делитель напряжения. Выходной сигнал снимается с нижнего плеча (конденсатора). Для постоянного напряжения сопротивление конденсатора очень велико, гораздо больше сопротивления выпрямителя. Поэтому уменьшения постоянного напряжения не происходит.

Для переменного напряжения сопротивления конденсатора очень мало, гораздо меньше сопротивления выпрямителя, поэтому происходит сильное ослабление переменной составляющей.

Вообще, такая комбинация активного сопротивления и конденсатора называется фильтром нижних частот, который пропускает постоянную составляющую и какой-то диапазон низких частот.

Чем выше частота входного переменного напряжения, тем сильнее оно ослабляется.

Так как необходимо сильное подавление пульсаций переменного напряжения, то используется электролитические конденсаторы большой емкости.

Назначение керамических SMD конденсаторов на материнской плате — подавлять высокочастотные помехи, возникающие при переключении транзисторов в микросхемах. Таким образом, электролитические конденсаторы фильтруют относительно низкочастотные помехи и пульсации, а керамические  — более высокочастотные.

Приведем еще один пример разделения переменной и постоянной составляющей. Пусть в схеме на рисунке сигнал в точке А будет иметь постоянную составляющую 5 В и переменную амплитудой 2 В.

После конденсатора,  в точке В будет уже только переменная составляющая той же амплитудой 2 В (если емкостное сопротивление конденсатора мало для такой частоты). Интересно, не правда ли?

По существу, это тоже частотно-зависимый делитель напряжения, где в виде нижнего плеча выступает сопротивление нагрузки. Такую комбинацию называют фильтром верхних частот, который не пропускает постоянную составляющие и низкие частоты, так как в емкостное сопротивление будет для них большим.

Заканчивая, отметим маленькую деталь: так как максимальное напряжение на конденсаторе будет равно сумме постоянной и переменной составляющей, его рабочее напряжение должно быть не менее этой величины.

Купить конденсаторы можно

Продолжение следует.

Виды конденсаторов

Конденсатор — это две металлические пластины, разделённые диэлектриком. Различают их по типу диэлектрика, материалу корпуса и способу производства пластин. Есть такие типы конденсаторов:

  • Бумажные. Пластины в нём — металлическая фольга, а диэлектрик — специальная бумага. Запаиваются они обычно в металлический корпус, так как прочностью не отличаются. Нормально себя ведут как в низкочастотных цепях, так и в высокочастотных.
  • Металлобумажные. Отличаются тем, что на бумагу нанесено металлическое напыление. Они более надёжны, при одинаковых  размерах с бумажными имеют большую ёмкость.

  • Электролитические. На металлическую фольгу (тантал или алюминий) наносится оксид, который и выполняет роль диэлектрика. Второй слой диэлектрика — электролит. Он может быть сухим или жидким. Обычно электролитическими называют с жидким электролитом. Электролитические конденсаторы практически всегда поляризованы. И при их подключении, обязательно соблюдать полярность. В противном случае они просто выйдут из строя. Бывают такие подвиды:
    • Хотя конденсаторы с сухим электролитом относятся к тому же типу, их обычно называют танталовыми. Именно с танталом обычно применяют сухой электролит.
    • Алюминиевые электролитические конденсаторы. Это когда на алюминиевую фольгу нанесён триоксид алюминия. Они имеют большую ёмкость при малых размерах, но применяться могут только в низкочастотных схемах. И ещё один недостаток — большой ток утечки.

    • Танталовыми правильно называть конденсаторы из танталовой фольги, в которых диэлектрик — пентоксид тантала. Они так же компактны, как и алюминиевые, но имеют более низкий ток утечки. И ещё — они более прочные механически.
  • Твердотельные или полимерные. В них диэлектрик — полимер. Это относительно новый тип конденсаторов. Они более устойчивы к температуре (как высокой, так и к низкой), имеют маленький ток утечки, низкое эквивалентное сопротивление и большой импульсный ток. Ими можно заменять электролитические аналоги, так как они более стабильны.

  • Плёночные. Ещё один из новых видов конденсаторов. Между металлическими пластинами проложена плёнка пластика. Это может быть поликарбонат, полиэстер, полипропилен и другие полимеры с диэлектрическими свойствами. Они более прочные механически, выдерживают высокие токи имея при этом очень малые токи утечки, стойки к пробою. Свойства отличные, но они имеют небольшую ёмкость. По совокупности характеристик обычно стоят в резонансных цепях (с возможным скачкообразным увеличением параметров).
  • Керамические. На керамическую основу наносится металлизированное напыление. Могут быть однослойными (малой ёмкости) и многослойными. Наиболее компактные конденсаторы, стойкие к механическим воздействиям. Но свойства керамических материалов сильно зависят от температуры, напряжения и частоты. Потому свойства керамических конденсаторов разные и зависят от вида использованной керамики. Для них также введена особая маркировка. Во-первых, потому что имеют малые размеры, а во-вторых, потому что делают из различной керамики и имеют большие отличия в характеристиках.

  • Высокочастотные с воздушным диэлектриком. Это специальные конденсаторы, которые радиолюбителям не встречаются.
READ  Антенна для телефона

Это все виды конденсаторов, которые можно встретить сейчас в продаже и на платах. Как видите, их немало и выглядят они совсем по-разному. Так как часть проблем с техникой связана с выходом их из строя, то неплохо было бы разбираться в их маркировке. Так уйдёт меньше времени на поиск замены.

Конденсаторы КМ

Существуют и глиняные конденсаторы типа КМ. Они используются:

  • в промышленном оборудовании;
  • при создании приборов для измерения, отличающихся высокоточными показателями;
  • в радиоэлектронике;
  • в сфере военной индустрии.

Устройства подобного типа отличаются высоким уровнем стабильности. Основу их функциональности составляют импульсные режимы в цепях с переменным и неизменным током. Их характеризует высокий уровень сцепления обкладок из керамики и долгая служба. Это обеспечивается низким значением коэффициента емкостного непостоянства температур.

Конденсаторы КМ при маленьких размерах имеют высокий показатель емкости, достигающий 2,2 мкФ. Изменение ее значения в интервале рабочей температуры у данного вида составляет от 10 до 90%.

Типы керамических конденсаторов группы Н, как правило, применяются как переходники или же блокирующие устройства и т. п. Современные приборы из глины изготавливаются при помощи прессовки под давлением в целостный блок тончайших металлизированных керамических пластинок.

Высокий уровень прочности этого материала дает возможность использовать тонкие заготовки. В итоге емкость конденсатора, пропорциональная показателю объема, резко возрастает.

Устройства КМ отличаются высокой стоимостью. Объясняется это тем, что при их изготовлении используются драгоценные металлы и их сплавы: Ag, Pl, Pd. Палладий присутствует во всех моделях.

Диод Шоттки отличается от обычных кремниевых диодов

Диод Шоттки делают из кремния (Si), арсенида галлия (GaAs) и редко — на основе германия (Ge). Металл в соединении с полупроводником определяет многие параметры диода. Этим металлом, может быть, золото (Au), ралладий (Pd), платина (Pt), вольфрам (W) которые наносятся на полупроводники.

А также как и обычный диод соединение полупроводник-металл обладает односторонней проводимостью с рядом положительных, а также отрицательных качеств.

Вольт-амперная характеристика диода шоттки

Вольт-амперная характеристика диода Шоттки отличается от обычного полупроводникового большей нелинейностью.

Что дает использование соединения металл-полупроводник? Два положительных момента:

    1. Очень небольшое падение напряжения на прямом переходе — 0,2-0,4 В. Для кремниевого диода «среднее» значение этого параметра — 0,7 В.  Правда, малое падение напряжения имеют только приборы с небольшим напряжением пробоя — до 100 В. Для более мощных это падение только чуть ниже, чем у кремниевых.
    2. Высокое быстродействие. То есть, он быстро меняет своё состояние. Переход из открытого состояния в закрытое и обратно происходит за очень короткий промежуток времени и определяется только барьерной ёмкостью. Их применяют в системах коммутации, где важна скорость реакции.

Что такое диод Шоттки и как он обозначается на схеме

Есть у них и минусы. При повышении температуры у них значительно возрастает обратный ток.

Второй недостаток — при превышении максимально допустимого обратного напряжения происходит необратимый пробой. То есть, прибор выходит из строя. Есть и ещё один минус — малое падение прямого напряжения только у диодов Шоттки с малым напряжением пробоя (до сотни вольт). У вариантов с более высоким напряжением потери сравнимы с кремниевыми.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

READ  Особенности измерения освещенности

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Общие параметры

При самостоятельной покупке конденсатора особое внимание уделяется его техническим характеристикам. Основным параметром считается емкость

Если значение показателя не превышает 9999 пФ, на схеме нет единиц измерения. Если емкость превышает указанные цифры, но не более 9999 мкФ, на схеме указывается единица измерения.

Дополнительно обозначается номинальное напряжение: 5−1000 В и больше. Специалисты советуют покупать конденсатор с запасом по номинальному напряжению. В противном случае могут возникнуть пробои диэлектрика. Сам прибор выйдет из строя. К дополнительным параметрам относят рабочую температуру, ток. На современном рынке можно приобрести конденсаторы с одной и тремя фазами. Они предназначены для внутренней и внешней установки.

Негативные факторы применения конденсаторов

Одной из главных проблем использования конденсаторов является высокая вероятность взрыва при перегревах, которые происходят из-за больших утечек. Также повысить риск поломки элемента могут близко расположенные радиаторы с высоким тепловым излучением. Какие типы конденсаторов наиболее подвержены взрывам? Чаще всего это происходит с электролитическими устройствами, обеспеченными ненадежными корпусами. Оптимизация конструкции с целью уменьшения размеров изделия заставляет производителей использовать тонкие оболочки, поэтому может иметь место разлет частей конденсатора и разбрызгивание электролита при сильном перегреве или в условиях повышенного внутреннего давления.

Особенности высоковольтных моделей

Элементы такого типа могут применяться в системах с высокими показателями напряжения, достигающими 15 000 В. При этом емкость у высоковольтных конденсаторов небольшая – порядка 50-100 нФ. В качестве диэлектрического материала чаще используется керамика. Благодаря этой основе выдерживаются большие нагрузки напряжения, а корпус защищает начинку от пробоев пластин.

Распространены и стеклянные вакуумные изделия, также поддерживающие напряжение более 10 000 В. Они представляют собой колбы с концентрическими электродами, в процессе работы обеспечивающими небольшие частотные потери. Применяют высоковольтные конденсаторы такого типа для решения ответственных радиочастотных задач с индуктивным нагревом. Но стоят такие компоненты дороже, отличаются хрупкостью и большими размерами.

Особенности применения конденсатора

У новичков часто возникает недопонимание, как правильно использовать конденсатор. Иногда появляется ложное мнение, что его вполне можно применить в качестве замены вместо блока питания или батареи.

Подобные элементы входят в состав модулей в схемах со статичными значениями, а также в сочетании с резисторами и транзисторами представляют собой вид платы в различных приборах.

Приоритетными остаются такие моменты:

  1. Выравнивание больших перепадов напряжения в устройствах переменного тока.
  2. Фильтрация возникающих НЧ и ВЧ помех.
  3. Оптимальное выравнивание пульсаций рабочего напряжения.

В зависимости от задач, которые необходимо выполнить, классифицируются функции и назначение конденсатора:

  • конструкции общего назначения, в которых имеются исключительно низковольтные составляющие. Они размещены на компактных платах – бытовые чайники, радио- и телевизионная техника;
  • способные формировать и подавать на панели приемки приборов импульсные модели;
  • высоковольтные образцы для цепей с постоянным током, поддерживающие системы технического и производственного назначения;
  • применяемые для установки в блоках управления и пультах пусковые модификации;
  • в оборудовании для военно-промышленного комплекса, телевизионной и спутниковой отрасли применяются помехоподавляющие элементы.

Входящие в состав платы детали различаются по такому параметру, как характеристика изменения емкости.

Способные оптимизировать на протяжении всего обозначенного эксплуатационного периода стабильные показатели емкости постоянные конденсаторы. Подходят для всех разновидностей устройств.

Применяемы для выполнения задач по изменению температурного режима, а также дополняющие работу варикапа и реостата переменные образцы.

Гибкие по своим возможностям переменные модели, используемые для увеличения пропускной способности систем.

Сравнение мейнфрейма и суперкомпьютера.

Суперкомпьютеры — это машины, которые находятся сегодня на пике доступных вычислительных мощностей, особенно в области операций с числами. Суперкомпьютеры используются для научных и инженерных задач (высокопроизводительные вычисления, например, в области метеорологии или моделирования ядерных процессов), где ограничивающими факторами являются мощность процессора и объем оперативной памяти, тогда как мэйнфреймы используются для целочисленных операций, которые являются требовательными к скорости обмена данными, надежности и способности одновременной обработки множества процессов (инвентаризация товаров, резервирование авиабилетов, банковские операции).

В контексте общей вычислительной мощности мэйнфреймы проигрывают суперкомпьютерам.

Паразитные параметры

Отдельные виды параметров являются паразитными, которые стараются снизить при конструировании и изготовлении. Их описание приведено ниже.

Эквивалентная схема

Данный параметр зависит от свойств диэлектрика и материала корпуса. Он показывает, насколько уменьшается заряд с течением времени у элемента, не включенного во внешнюю цепь. Утечка происходит в результате неидеальности диэлектрика и по его поверхности.

Для некоторых конденсаторов в характеристиках указывается постоянная времени Т, которая показывает время, в течении которого напряжение на обкладках уменьшится в е (2.71) раз. Численно постоянная времени равняется произведению сопротивления утечки на емкость.

Эквивалентное последовательное сопротивление (Rs)

Эквивалентное последовательное сопротивление ЭПС (в англоязычной литературе ERS) слагается из сопротивления материала обкладок и выводов. К нему также может добавляться поверхностная утечка диэлектрика.

По своей сути, ЭПС представляет собой сопротивление, соединенное последовательно с идеальным конденсатором. Такая цепь в некоторых случаях может влиять на фазочастотные характеристики. ЭПС обязательно должно учитываться при проектировании импульсных источников питания и контуров авторегулирования.

Электролитические конденсаторы имеют особенность, когда из-за наличия внутри паров электролита, воздействующих на выводы, величина ЭПС со временем увеличивается.

Эквивалентная последовательная индуктивность (Li)

Поскольку выводы обкладок и сами обкладки металлические, то они имеют некоторую индуктивность. Таким образом, конденсатор представляет собой резонансный контур, что может оказать влияние на работу схемы в определенном диапазоне частот. Наименьшую индуктивность имеют СМД компоненты ввиду отсутствия у них проволочных выводов.

Тангенс угла диэлектрических потерь

Отношение активной мощности, передаваемой через конденсатор, к реактивной, называется тангенсом угла диэлектрических потерь. Данная величина зависит от потерь в диэлектрике и вызывает сдвиг фазы между напряжением на обкладке и током. Тангенс угла потерь важен при работе на высоких частотах.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ означает изменение емкости при колебаниях температуры. ТКЕ может быть как положительным, так и отрицательным, в зависимости от того, как ведет себя емкость при изменениях температуры.

Для фильтрующих и резонансных цепей для компенсации температурного дрейфа в одной цепи используют элементы с разным ТКЕ, поэтому многие производители группируют выпускаемые элементы по величине и знаку коэффициента.

Диэлектрическая абсорбция

Данный эффект еще называют эффектом памяти. Проявляется он в том, что при разряде конденсатора через низкоомную нагрузку через некоторое время на обкладках возникает небольшое напряжение.

READ  Беспроводная охранная сигнализация

Величина диэлектрической абсорбции зависит от материалов, из которых изготовлен элемент. Она минимальна для тефлона и полистирола и максимальна для танталовых конденсаторов

Важно учитывать эффект при работе с прецизионными устройствами, особенно интегрирующими и дифференцирующими цепями

Паразитный пьезоэффект

Так называемый «микрофонный эффект» выражается в том, что при воздействии механических нагрузок, в том числе акустических колебаний, керамический диэлектрик в некоторых типах устройств проявляет свойства пьезоэлектрика и начинает генерировать помехи.

Самовосстановление

Свойством самовосстановления после электрического пробоя обладают электролитические бумажные и пленочные конденсаторы. Такие типы конденсаторов и их разновидности нашли применение в цепях, обеспечивающих запуск электродвигателей, в особенности, если трехфазный асинхронный электродвигатель включается в однофазную сеть. Свойство восстановления широко используется в силовой технике.

Виды конденсаторов

Классификация конденсаторов производится по технологии изготовления и материалу диэлектрика и обкладок. Чтобы полностью классифицировать, какие бывают конденсаторы, требуется большой объем информации. Наибольшее распространение получили такие устройства.

Бумажные и металлобумажные конденсаторы

Бумажные состоят из двух алюминиевых лент, разделенных полосой из конденсаторной бумаги. В металлопленочных вместо алюминиевых лент используется способ напыления металла непосредственно на бумагу. Такие конденсаторы могут восстанавливать характеристики после электрического пробоя.

Распространенная бумажная конструкция

Электролитические конденсаторы

Состоят из металлического анода, у которого оксидный слой на поверхности выполняет роль диэлектрика. Вторая обкладка представлена жидким электролитом. Ввиду того, что слой окиси очень тонкий, емкость таких конструкций может достигать больших величин. Ценой этому следует низкое рабочее напряжение и требование соблюдения полярности.

Электролитические конденсаторы

Алюминиевые электролитические конденсаторы

Это основной тип электролитических конденсаторов. Отличаются большой погрешностью емкости и низкой стойкостью к повышению температуры.

Танталовые электролитические конденсаторы

Разновидность электролитического, где в качестве анода используется спеченный танталовый порошок. Благодаря развитой поверхности анода, эквивалентная площадь обкладки получается очень большой. Используются в импульсных цепях.

Полимерные конденсаторы

Специальный проводящий органический полимер в таких устройствах используется в качестве замены электролита. Твердотельные электролитические конденсаторы имеют большой срок службы и не взрывоопасны.

Пленочные конденсаторы

В пленочных конструкциях диэлектриком выступают тонкие пленки полистирола, стироплекса, лавсана или фторопласта. Отличаются высокой стабильностью, низкими потерями, поэтому широко используются в высокочастотных устройствах.

В данном случае диэлектриком служит керамика или стекло с напыленным слоем металла.

Керамические конденсаторы

Конденсаторы с воздушным диэлектриком

Конструкции низкой емкости, в основном с изменяемой емкостью (переменные) для плавной регулировки частотных характеристик схемы.

Полиэстеровые модели

На схемах устройства данного типа обозначаются маркировкой K73-17 или CL21. Их оболочку формирует металлизированная пленка, а для корпуса используется эпоксидный компаунд. Как раз наличие этого наполнителя в конструкции делает полиэстеровые конденсаторы устойчивыми к температурным, физическим и химическим воздействиям. Этот набор эксплуатационных качеств обусловил и широкое распространение конденсаторов типа K73-17 в производстве светотехнических приборов. Средняя емкость устройства составляет 15 мкФ при максимальном напряжении порядка 1500 В. Характеристики скромные, но это не мешает применять конденсатор в тех же цепях с импульсным и переменным током. К тому же и низкая стоимость устройства способствует его популярности на радиорынке.

Основные параметры

Главные параметры конденсаторов, которые используются при проектировании и ремонте устройств радиоэлектроники, – это емкость и номинальное напряжение. Кроме этого, существует еще несколько дополнительных параметров, которые могут влиять на элементы схемы. Конденсаторы имеют следующие основные характеристики.

Ёмкость

Это самый основной параметр, который характеризует накопление электрического заряда. Расчет значения производится по различным формулам, в зависимости от конструкционных особенностей: плоский, цилиндрический или круглый конденсатор. На практике большая их часть выпускается как разновидности плоского. Емкость современных устройств варьируется от единиц пикофарад до десятков тысяч микрофарад и даже единиц фарад.

Удельная ёмкость

Этот относительный параметр привязывает габариты к величине емкости. Таким образом, чем выше удельная емкость, тем меньше габариты конструкции, однако при этом может упасть электрическая прочность (рабочее напряжение).

Плотность энергии

Данный параметр важен при использовании конденсаторов в качестве накопителей энергии, определяет величину энергии на единицу массы или объема элемента.

Номинальное напряжение

Значение напряжения, при котором сохраняются рабочие параметры в течение срока службы, называется номинальным. Рабочее напряжение должно быть меньше номинального.

Важно! Превышение номинального напряжения чревато выходом элемента из строя. Электролитический конденсатор при этом может разрушиться со взрывом

Вопреки распространенному мнению, элемент, включенный в цепь с напряжением, в несколько раз меньше номинального, сохраняет все остальные параметры.

Полярность

Такие виды конденсаторов, как электролитические, зачастую требуют включения в цепь с соблюдением полярности. Поскольку такие элементы используются, в основном, как накопители или фильтры, это не составляет затруднений. Несоблюдение полярности приводит к:

  • несоответствию емкости;
  • повреждению.

Маркировка обязательно содержит информацию о полярности подключения.

Опасность разрушения (взрыва)

Разрушение со взрывом характерно для электролитических конденсаторов. Причиной взрыва является нагрев, который возникает из-за:

  • несоблюдения полярности;
  • расположения рядом с источниками тепла;
  • старения (увеличения утечки и повышения эквивалентного сопротивления).

Для уменьшения последствий разрушения на корпусе в торце ставят предохранительный клапан или формируют насечки на крышке. Такая конструкция гарантирует, что при резком увеличении давления внутри корпуса скопившиеся газы и электролит выделяются через клапан или разрушенную по насечкам крышку. Таким образом, предотвращается взрыв, при котором обкладки и электролит разбрасываются по большой площади и вызывают замыкание элементов плат. Охлаждение устройства снижает вероятность разрушения.

Основные характеристики

Главным рабочим параметром является емкость, от которой зависит способность конкретной модели накапливать заряд. Следует разделять номинальную и фактическую емкость, так как на практике использования вторая величина может быть меньше. Диапазон значений по объему может варьироваться от 1 до 50 мкФ, а в некоторых случаях максимум достигает и 10 000 мкФ. Важен и показатель энергетической плотности, во многом определяемый конструкцией изделия. Наибольшей плотностью характеризуются крупноформатные типы конденсаторов, у которых масса обкладки с электролитом существенно превышает вес корпуса. К примеру, при емкости в 10 000 мкФ с напряжением в 0,45 кВт и массой порядка 2 кг плотность может достигать 600-800 Дж/кг. Как раз такие модели выгодно использовать для длительного хранения энергии. Помимо этого, рабочие свойства конденсаторов определяются допуском. Речь идет как раз о погрешности в соотношении показателей реальной и номинальной емкости. Данная величина выражается в процентах и в среднем составляет 20-30 %. В некоторых направлениях радиотехники применяются изделия с 1 % допуска.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: