Суперконденсатор

Содержание
  1. Устройство и конструкция изделия
  2. Перспективы развития
  3. Сравнение с обычными АКБ
  4. Преимущества эксплуатации суперконденсаторов
  5. Практическое использование ионисторов
  6. Транспортные средства
  7. Тяжёлый и общественный транспорт
  8. Автомобили
  9. Автогонки
  10. Бытовая электроника
  11. История создания
  12. Типы ионисторов
  13. Перспективы развития конденсаторов
  14. Ионисторы, суперконденсаторы, ультраконденсаторы — история создания и развития технологии
  15. Что такое ионистор
  16. Ионистор своими руками
  17. Свойства суперконденсаторов
  18. Основные характеристики
  19. Схема
  20. Концепция
  21. Параметры суперконденсаторов
  22. Отличия суперконденсаторов от аккумуляторов
  23. Преимущества
  24. Недостатки
  25. Параметры
  26. Ионистор вместо аккумулятора — практический обзор сборки суперконденсатора
  27. Необходимые компоненты
  28. Ионистор вместо аккумулятора — порядок сборки батареи
  29. Где такая конструкцию используется
  30. Параметры
  31. Заключение

Устройство и конструкция изделия

Основу данного конденсатора образуют два электрода, между которыми традиционно размещается электролитическая среда. Отличия от аккумулятора можно наблюдать в структуре материалов для изготовления электродов, пластины которых покрываются пористым активированным углем. Что касается электролита, то в этом качестве могут применяться органические и неорганические смеси. Конструкционно выделяется и техническое решение изоляции в структуре суперконденсаторов. Вместо аккумуляторных алюминиевых обкладок с диэлектрической прослойкой применяются компоненты с оптимальными свойствами ионной и электронной проводимости. Если продолжать концепцию возможного использования суперконденсатора в качестве аккумулятора, то электронным проводником вполне мог бы выступить пористый углерод, а ионным – раствор серной кислоты. Таким образом может обеспечиваться оптимальный слой разграничения зарядов между электродами без дополнительного включения громоздких изоляторов.

Перспективы развития

Согласно заявлениям сотрудников MIT 2006 года, ионисторы могут в скором времени заменить обычные аккумуляторы. Кроме того, в 2009 году были проведены испытания аккумулятора на основе ионистора, в котором в пористый материал были введены наночастицы железа. Полученный двойной электрический слой пропускал электроны в два раза быстрее за счёт создания туннельного эффекта. Группа учёных из Техасского университета в Остине разработала новый материал, представляющий собой пористый объёмный углерод. Полученный таким образом углерод обладал свойствами суперконденсатора. Обработка вышеописанного материала гидроксидом калия привела к созданию в углероде большого количества крохотных пор, которые в сочетании с электролитом смогли хранить в себе колоссальный электрический заряд.

В настоящее время создана одна из необходимых частей конденсатора — твёрдый нанокомпозиционный электролит с проводимостью по ионам лития. Ведётся разработка электродов для конденсатора. Одна из задач — уменьшить размеры ионистора за счёт внутреннего строения.

Учёные из Центра нанотехнологий Университета центральной Флориды (UCF) в 2016 году разработали гибкий ионистор, состоящий из миллионов нанометровых проволок, покрытых оболочкой из двумерных дихалькогенидов. Такой суперконденсатор выдерживает более 30 тысяч циклов зарядки.

Российские учёные из Сколковского института науки и технологий (Сколтех) (Сколково) в 2019 году разработали новый способ замещения атомов углерода на атомы азота в кристаллической решетке суперконденсаторов, который позволяет шестикратно увеличить их ёмкость, а также увеличить стабильность в циклах зарядки-разрядки. Изобретённый способ плазменной обработки углеродных наностенок структурной решётки ионисторов замещает до 3% атомов углерода на атомы азота. Удельная ёмкость наностенки после такой обработки достигает 600 Ф/г. Учёные также объяснили, смоделировали и описали механизм включения атомов азота в углеродную решётку. Данное исследование открывает путь к созданию гибких тонкопленочных суперконденсаторов на основе углеродных наностенок.

Сравнение с обычными АКБ

Основные отличительные параметры заключаются в скорости накапливания энергии и степени отдачи электрического заряда. За счет использования двойного слоя электрического потенциала у суперконденсатора при схожих размерах повышается площадь рабочей поверхности электродов. То есть можно говорить о совмещении лучших свойств АКБ и конденсатора как такового. Если же сравнивать распределение токов аккумулятора и суперконденсатора на нагрузку, то равномерность объемов потребляемого тока будет в целом идентичной, но с двумя поправками. При эксплуатации АКБ возможно смещение наибольшего тока в сторону элемента, расположенного в нижней части блока, а в случае с ионисторами в принципе потенциал будет меньше из-за низкого напряжения. Также к существенным различиям можно отнести разницу в рабочем ресурсе – суперконденсаторы примерно на 25-30 % служат дольше по времени, не говоря о более высоком коэффициенте выполнимых рабочих циклов.

Преимущества эксплуатации суперконденсаторов

Если в целом рассматривать положительные эффекты от использования суперконденсаторов вместо аккумуляторов, то на первый план выйдут следующие качества:

  • Высокая плотность энергии суперконденсаторов позволяет их использовать в электронных приборах как источник кратковременного питания.
  • Экологическая безопасность. Конечно, электрохимические компоненты по-прежнему сохраняются в конструкции, однако их токсическое влияние постоянно сокращается.
  • Возможность применения энергии от возобновляемых источников – ветра, солнца, воды и земли.
  • Расширение возможностей для конструкционной интеграции элементов питания – к примеру, для обслуживания сложных силовых установок, гибридных электрических машин, автомобилей на водородном топливе и т. д.

Стоит отметить и некоторые преимущества суперконденсатора по отношению к обычному конденсатору. Их немного, но принципиально важным является большая емкость для накопления энергии. По этому показателю не все модификации ионисторов могут конкурировать с АКБ, однако в сравнении с конденсаторами в параметре электрической вместимости они уверенно выигрывают.

Практическое использование ионисторов

Современные модели суперконденсаторов стали использоваться в сферах транспорта и бытовой электроники.

Транспортные средства

С недавнего времени в схему питания электротранспорта всё чаще стали встраивать мощные ионистры.

Тяжёлый и общественный транспорт

На улицах мегаполисов мира стали появляться электробусы. В Москве можно увидеть общественный транспорт, работающий на энергии бортовых ионисторов. Отечественные электрические автобусы вышли на городские маршруты столицы в мае нынешнего года.

На тяжёлых транспортных средствах суперконденсаторы используются как вспомогательный источник питания.

Автомобили

Ведущие производители электромобилей, такие как Тесла и Ниссан, пользуясь международными выставками, представляют каждый раз новые модели, системы питания которых построены на ионисторах. Российский опытный образец Ё-мобиль использует суперконденсатор как основной источник энергии.

Автомобильный ионистор

Дополнительная информация. На автомобилях, работающих на жидком топливе, стали устанавливать ионисторы для обеспечения лёгкого пуска двигателя в условиях Крайнего Севера.

Суперконденсатор с АКБ для облегчённого пуска двигателя

Автогонки

Для пропаганды и рекламы автомобилей, работающих на ионисторах, ведущие автоконцерны постоянно проводят автогонки на таких автомашинах. Зрители на таких мероприятиях проявляют большой интерес к перспективе развития электрического индивидуального транспорта.

Бытовая электроника

Суперконденсаторы стремительно ворвались в сферу бытовой электроники. Их можно заметить в блоках резервного питания ноутбуков, смартфонов. Ионисторы встроены в операционные блоки персональных компьютеров. Они предохраняют от потери данных во время аварийных отключений от постоянного источника электроэнергии.

Ионистор для бесперебойного питания ПК

История создания

Первый конденсатор с двойным слоем на пористых угольных электродах был запатентован в 1957 году фирмой General Electric. Так как точный механизм к тому моменту времени не был ясен, было предположено, что энергия запасается в порах на электродах, что и приводит к образованию «исключительно высокой способности накопления заряда». Чуть позже, в 1966, фирма Standard Oil of Ohio, Cleveland (SOHIO), USA запатентовала элемент, который сохранял энергию в двойном слое.

Столкнувшись с фактом небольшого объёма продаж, в 1971 году SOHIO передала лицензию фирме NEC, которой удалось удачно продвинуть изделие на рынке под названием «Supercapacitor» (Суперконденсатор). В 1978 году фирма Panasonic выпустила на рынок «Золотой конденсатор» («Gold capacitor», «Gold Cap»), работающий на том же принципе. Эти конденсаторы имели относительно высокое внутреннее сопротивление, ограничивающее отдачу энергии, и применялись в цепях питания энергозависимой памяти (SRAM).

Ионисторы в СССР были анонсированы в журнале «Радио» № 5 в 1978 году. Это были ионисторы КИ1-1 и они имели ёмкость от 0,1 до 50 Ф в зависимости от типоразмера.

Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году. На рынке эти ионисторы появились под названием «PRI Ultracapacitor».

Типы ионисторов

  1. Ионисторы с идеально поляризуемыми углеродными электродами («идеальный» ионистор, ионный конденсатор). Не используют электрохимических реакций, работают за счёт ионного переноса между электродами. Некоторые варианты электролита: 30% водный раствор KOH; 38 % водный раствор Н2SO4; органические электролиты.
  2. Ионисторы с идеально поляризуемым углеродным электродом и неполяризуемыми или слабо поляризуемыми катодом или анодом («гибридные» ионисторы).На одном электроде происходит электрохимическая реакция. Варианты: Ag(-) и твёрдый электролит ; 30 % водный раствор KOH и (+).
  3. Псевдоконденсаторы — ионисторы, использующие обратимые электрохимические процессы на поверхности электродов. Имеют высокую удельную ёмкость. Электрохимическая схема: (-) Ni(H) / 30 % водный раствор KOH / NiOOH (+); (-) С(Н) / 38 % водный раствор Н2SO4 / PbSO4(PbO2) (+).

Перспективы развития конденсаторов

По оценкам специалистов и разработчиков элементов питания, уже в скором будущем конденсаторы нового поколения станут использоваться повсеместно. Это станет возможным благодаря активному наращиванию удельной емкости устройств. К этому же стоит добавить и улучшение технико-конструкционных характеристик суперконденсаторов, что в первую очередь касается размеров и веса. Вместе с этим уже сегодня организуются испытания ионисторов мощностью до 2,5 мВт. В будущем подобные системы могут применяться в обслуживании транспортных сетей, промышленных объектов и жилых комплексов.

Ионисторы, суперконденсаторы, ультраконденсаторы — история создания и развития технологии

   7 июня 1962 года, Роберт Райтмаер, химик американской компании Standard Oil Company (SOHIO), располагавшейся в городе Кливленд, штата Огайо, подал заявку на получение патента, где подробно описывался механизм сохранения электрической энергии в конденсаторе, обладающем «двойным электрическим слоем». Если в обычном конденсаторе алюминиевые обкладки, традиционно, были изолированы слоем диэлектрика, то в предлагаемом изобретателем варианте акцент делался непосредственно на материал обкладок. Электроды должны были иметь различную проводимость: один электрод должен был обладать ионной проводимостью, а другой – электронной. 

   Таким образом, в процессе заряда конденсатора происходило бы разделение электронов и положительных центров в электронном проводнике, и разделение катионов и анионов в ионном проводнике. Электронный проводник предлагалось сделать из пористого углерода, тогда ионным проводником мог бы быть водный раствор серной кислоты. Заряд в таком случае сохранялся бы на границе раздела этих особых проводников (тот самый двойной слой). Разность потенциалов этих первых ионисторов могла достигать значения в 1 вольт, а емкость – единиц фарад, ведь теперь расстояние между обкладками было меньше 5 нанометров.

   В 1971 году лицензия была передана японской компании NEC, занимающейся к тому моменту всеми направлениями электронной коммуникации. Японцам удалось успешно продвинуть технологию на рынок электроники под названием «Суперконденсатор».

   Спустя семь лет, в 1978 году, компания Panasonic, в свою очередь, выпустила «Золотой конденсатор» («Gold Cap»), так же завоевавший успех на этом рынке. Успех был обеспечен удобством применения ионисторов для питания энергозависимой памяти SRAM. Однако эти ионисторы обладали высоким внутренним сопротивлением, которое ограничивало возможность быстрого извлечения энергии, а значит, сильно сужала диапазон сфер применения.

   Gold Cap от Panasonic

   В 1982 году специалисты американского Научно-исследовательского Института Pinnacle (PRI), расположенного в городе Лос-Гатос, штат Калифорния, работая над улучшением материалов электродов и электролитов, разработали ионисторы с чрезвычайно высокой плотностью энергии, которые появились на рынке под названием «PRI Ultracapacitor».

   Спустя 10 лет, в 1992 году, компания Maxwell Laboratories (позже сменившая название на Maxwell Technologies, г. Сан-Диего, штат Калифорния, США) начала развивать технологию PRI под названием «Boost Caps». Целью теперь стало создание конденсаторов высокой емкости с низким сопротивлением, чтобы получить возможность питания мощного электрооборудования.

   В 1999 году тайванская компания UltraCap Technologies Corp. также начала сотрудничество с PRI, которые разработали к тому времени электродную керамику чрезвычайно большой площади, и к 2001 году на рынок вышел первый высокоемкостной ультраконденсатор производства Тайваня. С этого момента началось активное развитие технологии во многих НИИ мира.

Что такое ионистор

Ионистор (или суперконденсатор) – это энергонакопительный конденсатор, заряд в котором накапливается на границе раздела двух сред – электрода и электролита. Энергия в ионисторе содержится в виде статического заряда. Накопление совершается, если к его обкладкам будет приложена разность потенциалов (постоянное напряжение).

Концепция создания ионисторов появилась недавно, и в настоящее время они заняли свою нишу применения. Ионисторы успешно могут заменять химические источники тока в качестве резервного (микросхемы памяти) или основного подзаряжаемого (часы, калькуляторы) источника питания.

Структура ионистора

Если обычный конденсатор представляет собой обкладки из фольги, разделенные сухим сепаратором, то ионистор – это комбинация конденсатора с электрохимической батареей. В нем применяются специальные обкладки и электролит.

В качестве обкладок используются материалы одного из трех типов: обкладки большой площади на основе активированного угля, оксиды металлов и проводящие полимеры. Использование высокопористых угольных материалов позволяет достичь плотности емкости порядка 10 Ф/см3 и больше.

Ионисторы на базе активированного угля наиболее экономичны в изготовлении. Их еще называют двухслойными или DLC-конденсаторами, потому что заряд сохраняется в двойном слое, образующемся на поверхности обкладки.

Электролит ионисторов может быть водным либо органическим. Ионисторы на основе водного электролита обладают небольшим внутренним сопротивлением, но напряжение заряда для них ограничено 1 В. А ионисторы на основе органических электролитов обладают более высоким внутренним сопротивлением, но обеспечивают напряжение заряда 2…3 В.

Для питания электронных схем нужны более высокие напряжения, чем обеспечивают ионисторы. Для получения нужного напряжения их включают последовательно. 3-4 ионистора обеспечивают напряжение достаточной величины.

Величина энергетической емкости конденсаторов измеряется в пикофарадах, нанофарадах и микрофарадах, в то время как емкость ионисторов (суперконденсаторов) на самом деле огромна и измеряется в фарадах (Ф). В ионисторах достижима энергетическая плотность от 1 до 10 Вт/кг. Она больше, чем у типичных конденсаторов, но меньше, чем у аккумуляторов. Относительно низкое внутреннее сопротивление ионисторов обеспечивает хорошую проводимость.

Ионистор

Ионистор своими руками

Для изготовления суперконденсатора в домашних условиях понадобятся:

  • фольга из пачки сигарет (диэлектрик);
  • таблетки активированного угля (электрод);
  • водорастворимый акриловый лак или клей ПВА (электролит).

Изготовить самодельный ионистор можно следующим образом:

  1. Из фольги вырезают 2 прямоугольника.
  2. Таблетки угля размалывают в ступке до состояния мелкого порошка. Это можно сделать и в кофемолке.
  3. Угольный порошок перемешивают с акриловым лаком.
  4. Полученную смесь наносят кисточкой на один из отрезков фольги.
  5. После просушки наносят второй угольный слой, затем процесс повторяют.
  6. Используя клей ПВА, приклеивают второй прямоугольник из фольги. Суперконденсатор готов.
  7. Подсоединив проводки к двум противоположным сторонам изделия, можно зарядить ионистор с помощью любой батарейки.

Суперконденсатор своими руками

Научно-технический прогресс в создании совершенных источников электроэнергии ни на секунду не замирает. В скором будущем будут созданы высоковольтные суперконденсаторы высокого качества, которые сделают технологический переворот практически во всех сферах деятельности человечества.

Свойства суперконденсаторов

   Среди свойств следует отметить:

   Суперконденсаторы, емкость которых обеспечивается их двухслойной структурой, накапливают энергию в поляризованном жидком слое толщиной всего несколько ангстрем, расположенном на границе между раствором электролита с ионной проводимостью и электродом с электронной проводимостью. По мнению специалистов в этой области, например, г-на Калерта (Dr. Kahlert), суперконденсаторами следует считать конденсаторы емкостью минимум 10 фарад. Суперконденсаторы – это преимущественно двухслойные конденсаторы; конденсаторы, изготовленные по другим технологиям, например, плёночные или керамические, суперконденсаторами не считают. Обычно, в суперконденсаторе два активных электрода, разделенные пористым непроводящим материалом, размещены между двумя металлическими токовыми коллекторами. Электролит, водный либо органический, пропитывает пористые электроды и обеспечивает возникновение носителей заряда с последующим его накоплением.

   Суперконденсатор обычно используют для обеспечения импульсной или пиковой мощности в каком-либо устройстве. Суперконденсатор также используется для кратковременного снабжения устройств энергией и для поглощения энергии из области своего применения. Примером применения пиковой мощности являются линии электропередачи, примером кратковременного снабжения энергией – сотовые телефоны/бытовая электроника и радиотехника, а примером поглощения энергии – устройства регенеративного торможения в гибридных/электрических транспортных средствах.

Основные характеристики

На сегодняшний день сложно говорить об устоявшихся эксплуатационных показателях ионисторов, поскольку технология постоянно совершенствуется, причем с поправкой на улучшение и электрохимических источников тока. Но если брать средние данные по основным характеристикам суперконденсаторов, то конкретные показатели будут выглядеть так:

  • Время зарядки – от 1 до 10 сек.
  • Количество циклов зарядки – порядка 1 млн, что соответствует 30 000 ч.
  • Напряжение в ячейке блока – диапазон от 2,3 до 2,75 В.
  • Энергоемкость – стандартное значение 5 Вт*ч/кг.
  • Мощность – порядка 10 000 Вт/кг.
  • Долговечность – до 15 лет.
  • Рабочая температура – от -40 °С до 65 °С.

Схема

Вот схема второго прототипа батареи.

Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.

Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.

На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.

А заряжается аккумуляторная батарея через контроллер зарядки.

Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.

Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Концепция


Сравнение конструктивных схем трёх конденсаторов. Слева: «обычный» конденсатор, в середине: , справа: ионистор

В связи с тем, что толщина двойного электрического слоя (то есть расстояние между «обкладками» конденсатора) крайне мала за счёт использования электролитов, а площадь пористых материалов обкладок — колоссальна, запасённая ионистором энергия выше по сравнению с обычными конденсаторами того же размера. К тому же использование двойного электрического слоя вместо обычного диэлектрика позволяет намного увеличить площадь поверхности электрода. Типичная ёмкость ионистора — несколько фарад при номинальном напряжении 2—10 вольт.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В. Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.

Принципиальная схема источника бесперебойного питания напряжением на суперконденсаторах, основные узлы реализованы на одной микосхеме производства LinearTechnology

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае — емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Отличия суперконденсаторов от аккумуляторов

Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше.

Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.

Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.

Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений – использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.

В портативных электронных приборах используются источники питания разнообразных типов

В таких устройствах, как планшеты, смартфоны и ноутбуки важное значение имеет удельная энергоемкость. Чем больше данный показатель, тем выше будет емкость устройства при тех же физических параметрах

Преимущества

  • Если сравнивать ультраконденсаторы с аккумуляторами, то первые из них способны обеспечить значительно большее число циклов заряда и разряда.
  • Цикл заряда и разряда происходит за очень короткое время, что дает возможность применять их в таких ситуациях, когда нельзя установить аккумуляторы, ввиду их длительной зарядки.
  • Устройства такого вида имеют намного меньшую массу и габаритные размеры.
  • Для выполнения заряда не требуется специального зарядного устройства, что упрощает обслуживание.
  • Срок работы ультраконденсаторов значительно выше, по сравнению с батареями аккумуляторов и силовыми конденсаторами.
  • Широкий интервал эксплуатационной температуры от -40 до +70 градусов.

Недостатки

  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.

Плоский ионистор

Параметры

Ионисторы отличаются следующими характеристиками:

  1. Внутреннее сопротивление (измеряется в миллиОмах).
  2. Максимальный ток. (А).
  3. Номинальное напряжение (В).
  4. Емкость (Ф).
  5. Параметры саморазряда.

В качестве электродов в приборе применяется активированный уголь или углерод на вспененной основе. Эти компоненты помещаются в электролит. Сепаратор предназначен для защиты устройства от короткого замыкания электродов. В современных устройствах не используется электролит на основе кислоты или кристаллического раствора щелочи, так как данные компоненты обладают высоким уровнем токсичности.

Во внутренних полостях конструкции содержится электролит, запасающий электроэнергию при взаимодействии с пластинами. Первые электрохимические ионисторы (молекулярные накопители энергиибыли) разработаны более 50 лет назад. Они были изготовлены на основе пористых углеродных электродов. В настоящее время они используются в некоторых электрических приборах. По сравнению с литий – ионными аккумуляторами современные ионисторы характеризуются большим ресурсом и высокой скоростью разряда.

При использовании ионисторов можно добиться более экономичного режима работы за счет аккумулирования излишков энергии. Между обкладками конструкции располагается не стандартный слой диэлектрика, а более толстая прослойка, позволяющая получить тонкий зазор.

При этом прибор обеспечивает возможность получения электроэнергии в больших объемах. Суперконденсатор аккумулирует и расходует заряды быстрее, чем альтернативные варианты. Двойной слой диэлектрика увеличивает площадь электродов. Это позволяет улучшить электрические характеристики.

Связка из шести ионисторов

Ионистор вместо аккумулятора — практический обзор сборки суперконденсатора

Ионистор вместо аккумулятора (он же суперконденсатор, ультраконденсатор) — в принципе это тот же конденсатор, только имеющий большую емкость, которую можно сравнить с аккумулятором. Вот именно такое устройство рассчитанное на напряжение 12v я собрал для нужд в бытовом хозяйстве. Практически такой прибор способен работать во много раз дольше, чем аккумуляторы различных типов, конечно при условии эксплуатации в определенных режимах. Вот в чем особенность применения ионистора вместо аккумулятора и его преимущество:

  • прибору не страшен полный разряд до нулевого значения;
  • в несколько сотен раз больше способен выдержать моментов заряда/разряда;
  • прибор не боится максимальных значений по току.

Но не только такие особенности имеются у ионистора использующегося вместо аккумулятора, о них я скажу после выполнения сборки накопителя.

Необходимые компоненты

  • Суперконденсаторы в количестве восьми штук с номиналом 2,7v х 500F
  • Одножильый провод сечением от 2 мм²
  • Пару винтов и гаек
  • Инструмент: паяльник, пинцет, кусачки.
  • Расходники: припой, флюс.

Ионистор вместо аккумулятора — порядок сборки батареи

В данном обзоре я буду собирать накопитель энергии с применением восьми конденсаторов, включенных по встречно-параллельной схеме. В принципе будет организованно четыре пары по две емкости включенных параллельно, а пары в свою очередь соединены последовательно.

Эмалированный провод нужно выровнять и убрать с него лак. Выполняется это с помощью рабочего ножа или специального инструмента для зачистки проводов ( у кого он имеется).

Формируем медный провод в соединительные шины

Необходимо изготовить три квадратных элемента и пару полюсов для клемм «+» и «-«

К сформированным изделиям для контактов припаиваем гайки, к которым будут подключаться провода питания.

Залуживаем места соединения квадратов.

Соединяем емкости в батарею, припаиваем проводники к выводам конденсатора, соблюдая при этом полярность.

Вначале нужно собрать четыре группы.

Теперь припаиваем шины для подключения проводов питания.

На этом этапе нужно зарядить батарею током 5А.

По истечению пяти минут накопитель будет полностью заряжен.

Делаем испытательный тест лампой накаливания.

Делаем короткое замыкание выходных контактов — провод разогрелся до красного состояния.

Испытываем батарею подключением электромотора.

Где такая конструкцию используется

Использовать можно ионистор вместо аккумулятора, там где присутствуют большие и цикличные нагрузки по току. Классический пример: накопительная емкость для сабвуфера установленного в автомобиле. Кроме этого суперконденсатор может быть задействован в устройствах где происходят постоянные циклы зарядки/разрядки, например: устройства накопления солнечной энергии с последующей ее передачей фонарям освещения в ночное время.

Здесь приведены только два примера использования ионистора вместо аккумулятора, но на самом деле их существенно больше

Стоимость компонентов для сборки такого прибора вполне приемлема, особенно если взять во внимание колоссальный срок их эксплуатации с учетом применения по назначению

Сборка ионистора вместо аккумулятора 12v, 100A

Параметры

Основные электрические характеристики ионисторов включают в себя:

  • емкость, для ее измерения используется единица Фарад (Ф);
  • внутреннее сопротивление (Ом);
  • максимальный ток разряда (А);
  • величина номинального напряжения (В)
  • параметры саморазряда и разряда, последний довольно важный параметр, поэтому приведем формулу, по которой можно произвести расчет времени разряда ионистора:  где:

t – время разряда, измеряется в секундах (с);

С – емкость устройства (Ф);

V1, V2 – начальное и конечное значение диапазона напряжений, при которых проводилось тестирование;

I – величина тестового тока (А).

Заключение

Концепция суперконденсатора считается оптимальным решением в ситуациях, когда есть краткосрочная потребность в энергоснабжении с оперативным зарядом. Отчасти в этом заключается противоречие с идеей электрохимических батарей, которые ориентируются на длительное поддержание питания с определенными параметрами. Но возможно ли применение суперконденсатора вместо аккумулятора на автомобиле с учетом данной эксплуатационной особенности? С высокой долей вероятности передовые автоконцерны и будут использовать конденсаторы высокой удельной емкости, но только в специальных гибридных версиях, объединяющих в себе положительные качества ионисторов как таковых и традиционных электрохимических компонентов. К примеру, сегодня подобные решения применяются в виде сочетания электрохимической свинцово-кислотной структуры и суперконденсатора.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Суперконденсатор
Гофротруба