Термопара: что это такое

Способы подключения

Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный.
В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используются два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.

Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик:

— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежание наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.

Преимущества и недостатки термометров сопротивления

Как и любой прибор, использование термометров сопротивления имеет ряд преимуществ и недостатков. Рассмотрим их.

Преимущества:

  • практически линейная характеристика;
  • измерения достаточно точны (погрешность не более 1°С);
  • некоторые модели дешёвые и просты в использовании;
  • взаимозаменяемость приборов;
  • стабильность работы.

Недостатки:

  • малый диапазон измерений;
  • довольно низкая предельная температура измерений;
  • необходимость использования специальных схем подключения для повышенной точности, что увеличивает стоимость внедрения.

Термометр сопротивления — распространенное устройство практически во всех отраслях промышленности. Этим прибором удобно измерять невысокие температуры, не опасаясь за точность полученных данных. Термометр не отличается особой долговечностью, однако, приемлемая цена и простота замены датчика перекрывают этот небольшой недостаток.

Явление Зеебека

Состоит в следующем. Если в замкнутом контуре из двух разнородных проводников, а лучше полупроводников так, как эффект сильнее выражен для полупроводников, поддерживать места соединения этих проводников, обще принято называть, спаи, при разных температурах, то в такой цепи пойдет ток. Направление тока зависит от того какая из температур, какого спая выше. При одной разности в одном направлении, при другой разности в другом.

Это устройство, будучи разрезанным в одном из мест используется в качестве термопары, датчика температуры. В схеме 2, далее, будет показано спай 1, мы будем нагревать или охлаждать, а другой спай внутри гальванометра, который находится при комнатной температуре. В зависимости от того какая будет температура спая Т1 выше комнатной или ниже, стрелка гальванометра, будет отклоняться либо в одну, либо в другую сторону.

Если в цепи термопары обе проволоки из одного материала то ничего происходить не будет. Проверить это очень просто, возьмите две медные проволоки с изоляцией, меры безопасности никто не отменял, подсоедините их одними концами к гальванометру, а другими скрутите вместе (но лучше спаять), и начните нагревать, так же можно опустить в воду с кусочками льда. Если вы взяли одинаковые проволоки, то стрелка прибора останется на нуле. Но если вы возьмете разные проволоки и точно так же подсоедините их к прибору, а другие концы скрутите. И после этого будете нагревать или охлаждать, оголенные концы проводов, то вы сможете наблюдать, как и в какую сторону будет отклоняться стрелка гальванометра.

Что за устройство такое?

Под термопарой подразумевается специальный прибор, который служит для измерения температуры рабочей среды. Такое устройство широко распространено в промышленности, медицине и прочих областей жизнедеятельности человека. Впрочем, всюду, где необходима высокая точность замеров.

С конструктивной точки зрения – это два разных проводника, которые припаяны (или приварены) друг к другу на одном из концов. Место их соединения называется спаем. А в качестве проводников используются разные материалы, и в зависимости от этого диапазон измеряемой термопарой температуры составляет от -250 ᴼC до 2000 ᴼC, а то и более. В большинстве случаев это металлы, полупроводники используются реже.

Применение термопар

Для измерения температуры различных типов объектов и сред, а также в качестве датчика температуры в автоматизированных системах управления. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.

Для контроля пламени и защиты от загазованности в газовых котлах и в других газовых приборах (например, бытовые газовые плиты). Ток термопары, нагреваемой пламенем горелки, удерживает в открытом состоянии газовый клапан. В случае пропадания пламени ток термопары снижается и клапан перекрывает подачу газа.

В 1920—1930-х годах термопары использовались для питания простейших радиоприемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т. п.) с использованием открытого огня.

Приёмник излучения

Крупный план термобатареи фотоприёмника. Каждый из проволочных уголков представляет собой термопару.

Исторически термопары представляют один из наиболее ранних термоэлектрических приёмников излучения. Упоминания об этом их применении относятся к началу 1830-х годов. В первых приёмниках использовались одиночные проволочные пары (медь — константан, висмут — сурьма), горячий спай находился в контакте с зачернённой золотой пластинкой. В более поздних конструкциях стали применяться полупроводники.

Термопары могут включаться последовательно, одна за другой, образуя термобатарею (англ.). Горячие спаи при этом располагают либо по периметру приёмной площадки, либо равномерно по её поверхности. В первом случае отдельные термопары лежат в одной плоскости, во втором параллельны друг другу.

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность.

Недостатки

  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Способ производства

Хромель и алюмель – одни из самых трудоёмких в производстве. Сложность технологического процесса заключается в необходимости строгого контроля пропорций компонентов во время плавления, так как ключевые характеристики конечного продукта обусловлены в основном соотношением материалов. Составы производят в индукционных печах различной частотности.

Порядок плавления следующий. Большую часть хрома загружают в жидкую ванну, оставляя несколько килограмм для коррекции. Затем вводят никель и одновременно флюс. Плавление ведется в интенсивном режиме. Раскисление металла производится добавлением марганца и магния. Затем проводится определение термоэлектродвижущей силы и корректировка содержания хрома.

Аналогичным способом производятся другие никелевые сплавы. Различия заключаются в очередности загрузки материалов и окислителях. Например, производство сплава алюмель производится следующим образом. Загружаются никель и флюс, уже после этого остальные компоненты. В качестве окислителя используется магний. Таким образом получают алюмелевые сплавы, хромель и копель.

Источники погрешностей измерений

На выполнение правильного процесса измерения влияют внешние источники, техническое состояние средств измерения и другие условия. На точность измерения с использованием термоэлектрического преобразователя влияет изменение электродвижущей силы.

Это явление называется термоэлектрической нестабильностью используемых сплавов. В процессе эксплуатации стало известно, что сплавы электродов изменяют свою ЭДС, которая приводит к искажению показаний.

Во время длительной эксплуатации при высоких температурах такие ошибки могут достигать больших величин, что приводит к снижению точности измерений.

Основными причинами нестабильности измерений считаются:

  • взаимодействие термоэлектродов с внешней средой;
  • влияние на датчики изолирующих и защитных устройств;
  • взаимодействие электродов друг с другом;
  • внутренние процессы, которые возникают при изменении температуры;
  • влияние радиации, электромагнитных полей и перепадов давления.

Под воздействием высокой температуры происходит снижение сопротивления изоляции датчиков, которое приводит к искажению измерений. Часто источником возникновения ошибок при замерах становится неправильный выбор термоэлектрода, так как его сопротивление не совпадает с показаниями электрической цепи. Изменение электродвижущей силы по длине термоэлектрического преобразователя тоже приводит к возникновению ошибок при получении показателей.

Проверка работы термопары

В случае выхода из строя термопары не подлежит ремонту. Теоретически можно, конечно, ее починить, но вот будет ли прибор после этого показывать точную температуру – это большой вопрос.

Иногда неисправность термопары не является явной и очевидной. В частности, это касается газовых колонок. Принцип работы термопары все тот же. Однако она выполняет несколько иную роль и предназначается не для визуализации температурных показаний, а для работы клапанов. Поэтому, чтобы выявить неисправность такой термопары, необходимо подключить к ней измерительный прибор (тестер, гальванометр или потенциометр) и нагреть спай термопары. Для этого не обязательно держать ее над открытым огнем. Достаточно лишь зажать его в кулак и посмотреть, будет ли отклоняться стрелка прибора.

Причины выхода из строя термопар могут быть разными. Так, если не надеть специальное экранирующее устройство на термопару, помещенную в вакуумную камеру установки ионно-плазменного азотирования, то с течением времени она будет становиться все более хрупкой до тех пор, пока не переломается один из проводников. Кроме того, не исключается и вероятность неправильной работы термопары из-за изменения химического состава электродов. Ведь нарушаются основополагающие принципы работы термопары.

Газовая аппаратура (котлы, колонки) также оснащается термопарами. Основной причиной выхода из строя электродов являются окислительные процессы, которые развиваются при высоких температурах.

В том случае, когда показания прибора являются заведомо ложными, а при внешнем осмотре не были обнаружены слабые зажимы, то причина, скорее всего, кроется в выходе из строя контрольно-измерительного прибора. В этом случае его необходимо отдать в ремонт. Если имеется соответствующая квалификация, то можно попытаться устранить неполадки самостоятельно.

Да и вообще, если стрелка потенциометра или цифровой индикатор показывают хоть какие-то «признаки жизни», то термопара является исправной. В таком случае проблема, совершенно очевидно, кроется в чем-то другом. И соответственно, если прибор никак не реагирует на явные изменения температурного режима, то можно смело менять термопару.

Однако прежде чем демонтировать термопару и ставить новую, нужно полностью убедиться в ее неисправности. Для этого достаточно прозвонить термопару обычным тестером, а еще лучше – померить напряжение на выходе. Только обычный вольтметр здесь вряд ли поможет. Понадобится милливольтметр или тестер с возможностью подбора шкалы измерения. Ведь разность потенциалов является очень маленькой величиной. И стандартный прибор ее даже не почувствует и не зафиксирует.

Принцип работы термопары

Термоэлектрический преобразователь – это два проводника (А и В), которые созданы из разных металлов (сплавов). Они объединены в единую электрическую цепь. Места соединений (t1 и t2) помещают в зоны с разными температурами. Это действие инициирует возникновение электродвижущей силы (тока).

Схема, поясняющая принцип действия термопары

Примечания:

  • А (В) – положительный (отрицательный) электрод, соответственно;
  • t1 – «горячий спай», который устанавливают в области с высокой температурой;
  • t2 – «холодный спай», расположенный снаружи для подключения измерительных приборов.

К сведению. Рассмотренное выше явление называют «эффектом Зебека» по имени ученого, сделавшего открытие. Он смог основать заключение о главных принципах построения измерительных приборов.

Как проверить работу термостата

Для проверки термостата можно использовать следующий метод: при изменении температурной уставки должны быть слышны характерные щелчки при прохождении значения температуры, равной температуре окружающей среды – замыкание и размыкание контактов.

Если термостат съёмный, то можно попробовать нагреть его чувствительный элемент и проверить срабатывание.

Если, например, рассмотреть термостат в духовке, то задав определенную температуру, после прогрева можно понаблюдать за пламенем горелки: если оно уменьшилось и остается на одном уровне, то все в порядке. Точности полученного результата можно достигнуть, используя термометр.

Правильность срабатывания уставочного значения термостата можно при помощи термометра или мультиметра с термопарой. Такой способ подойдет, например, для стиральной машины. Также поможет тестер, который подсоединив к контактам термостата покажет их замыкание и размыкание.

Как работает термопара с газовым котлом

Термопара — что это такое? Для пользователя все становится ясно, когда возникают перебои в работе газового оборудования. Рабочий спай термопары в котле нагревается от пламени запальника. В цепи наводится термо-ЭДС равная 20-25 mV, значения которой достаточно для срабатывания электромагнитного клапана. При этом открывается подача газа на обогрев котла. Запальная горелка всегда функционирует, пока работает котел. От нее зажигается основная горелка, греющая воду. Термопара для газовой плиты также необходима, чтобы обеспечить электроподжиг на конфорках.

Кроме того, некоторые плиты снабжают защитой при сбоях в подаче, когда в сети пропадает газ, а затем подается снова.

При горении газового факела в котле место спайки термоэлектродов остается нагретым, и за счет этого обеспечивается подача топлива. После того как пламя погаснет, рабочий спай термопары остывает, и она перестает вырабатывать ток. При этом происходит аварийное отключение электромагнитного клапана, перекрывающего газ.

Принцип работы устройства

Принцип действия термопары основывается на явлении, которое было обнаружено немецким физиком Томасом Иоганном Зеебеком в 1821 году. Им было замечено, что если нагреть два соединенных проводника из разнородных материалов, то возникает напряжение, которое получило название, как термоЭДС. При этом величина ее зависит от степени нагрева места соединения этих проводников. Впоследствии эффект получил имя его открывателя.

К примеру, при нагреве железа возникает положительное напряжение равное 15 мкВ на каждый 1 °C, в то время как в никеле создается отрицательное значение тока -20,8 мкВ. Поскольку в большинстве случаев используется сплав алюмеля с хромелем, то при нагреве до температуры 300 °С «дуэт» этих металлов образует напряжение 12 мВ.

Этого вполне достаточно для срабатывания электромагнитного реле, которое удерживает кран безопасности открытым. Но стоит только температуре упасть (что происходит практически мгновенно), реле отключается, в результате чего клапан закрывается.

Такое объяснение принципа действия термопары простыми словами будет вполне понятно многим.

Хромель-алюминиевые термопары

Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.

Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.

Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот химический элемент негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.

Литература

  • Термопара // Телецкое озеро — Трихофития. — М. : Советская энциклопедия, 1946. — ( :  / гл. ред. О. Ю. Шмидт ; 1926—1947, т. 54).
  • Киес Р. Дж., Крузе П. В., Патли Э. Г., Лонг Д., Цвиккер Г. Р., Милтон А. Ф., Тейч М. К. § 3.2. Термопара // Фотоприёмники видимого и ИК диапазонов = Optical and Infrared Detectors / пер. с англ. под ред. В. И. Стафеева. — М.: Радио и связь, 1985. — 328 с.

H. Melloni. Ueber den Durchgang der Wärmestrahlen durch verschiedene Körper (нем.) // Annalen der Physik und Chemie : журнал. — Leipzig: Verlag von Johann Ambrosius Barth, 1833. — Bd. 28. — S. 371—378.

Грунин В. К. § 2.3.4. Термоэлектрические приёмники излучения // Источники и приёмники излучения: учебное пособие. — СПб.: Издательство СПбГЭТУ «ЛЭТИ», 2015. — 167 с. — ISBN 978-5-7629-1616-5.

Монтаж термопары

Для минимизации отмеченных выше негативных влияний применяют подключение термопары проводами из тех же материалов, которые использованы для изготовления положительного (отрицательного) электрода. Обязательно соблюдают соответствие полярности. Измерительный блок (преобразователь) размещают на небольшом удалении. Данные с него в цифровой форме поступают в компьютерный центр для индикации показаний, последующей обработки.

Монтажные схемы

Измерение температуры в контрольных точках (1) применяют для создания компенсационного напряжения. Если приборы подключают в разрыв цепи (2), выбирают проводники с одинаковыми параметрами.

Конструкции термопар

Существует две основные разновидности конструкций термопар.

  • С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.

  • Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.

Виды датчиков и их характеристики

Измерение температуры термометром сопротивления происходит с помощью одного или нескольких чувствительных элементов сопротивления и соединительных проводов, которые надежно спрятаны в защитном корпусе.

Классификация ТС происходит именно по типу чувствительного элемента.

Металлический термометр сопротивления по ГОСТ 6651-2009

Согласно ГОСТ 6651-2009 выделяют группу металлических термометров сопротивления, то есть ТС, чей чувствительный элемент — это небольшой резистор из металлической проволоки или пленки.

Платиновые измерители температуры

Платиновые ТС считаются самым распространёнными среди других видов, поэтому их часто устанавливают для контроля важных параметров. Диапазон измерения температуры лежит от -200 °С до 650 °С. Характеристика близка к линейной функции. Один из самых распространённых видов — Pt100 (Pt — платиновый, 100 — означает 100 Ом при 0 °С).

Никелевые термометры сопротивления

Никелевые ТС почти не используются в производстве за счет узкого температурного диапазона (от -60 °С до 180 °С) и сложностей эксплуатации, однако, следует отметить, что именно они имеют самый высокий температурный коэффициент 0,00617 °С-1.

Ранее такие датчики использовались в кораблестроении, однако, сейчас в этой отрасли их заменили на платиновые ТС.

Медные датчики (ТСМ)

Казалось бы, у медных датчиков диапазон использования еще уже, чем у никелевых (всего от -50 °С до 170 °С), но, тем не менее, именно они являются более популярным типом ТС.

Секрет в дешевизне прибора. Медные чувствительные элементы просты и неприхотливы в использовании, а также отлично подходят для измерения невысоких температур или сопутствующих параметров, например, температуры воздуха в цехе.

Срок службы такого устройства невелик, однако, и средняя стоимость медной ТС не слишком бьет по карману (около 1 тыс. рублей).

Терморезисторы

Терморезисторы — это термометр сопротивления, чей чувствительный элемент сделан из полупроводника. Это может быть оксид, галогенид или другие вещества с амфотерными свойствами.

Преимуществом данного прибора является не только высокий температурный коэффициент, но и возможность придать любую форму будущему изделию (от тонкой трубки до устройства длиной в несколько микрон). Как правило терморезисторы рассчитаны для измерения температуры от -100 °С до +200 °С.

Различают два вида терморезисторов:

  • термисторы — имеют отрицательный температурный коэффициент сопротивления, то есть при росте температуры, сопротивление уменьшается;
  • позисторы — имеют положительный температурный коэффициент сопротивления, то есть при увеличении температуры, сопротивление также возрастает.

ÐеиÑпÑавноÑÑÑ ÑеÑмопаÑÑ Ð¿Ð»Ð¸Ñ

У каждого ÑÑÑÑойÑÑва найдÑÑÑÑ ÑлабÑе меÑÑа, и ÑеÑмоÑлекÑÑиÑеÑкий пÑеобÑазоваÑÐµÐ»Ñ — не иÑклÑÑение. Ðн оÑлиÑаеÑÑÑ Ð¾Ñобой ÑÑвÑÑвиÑелÑноÑÑÑÑ Ðº ÑоÑÑоÑÐ½Ð¸Ñ Ð´Ð°ÑÑика, коим ÑвлÑеÑÑÑ ÐµÐ³Ð¾ «гоÑÑÑий» конеÑ. Ðа его повеÑÑноÑÑи Ð¼Ð¾Ð¶ÐµÑ Ð¿Ð¾ÑвиÑÑÑÑ ÑилÑнÑй Ð½Ð°Ð³Ð°Ñ Ð¸Ð»Ð¸ пÑоÑие загÑÑзнениÑ. Ðо ÑÑой пÑиÑине ÑеÑмопаÑа не ÑпоÑобна вÑÑабоÑаÑÑ Ð½ÐµÐ¾Ð±Ñодимое напÑÑжение, в ÑезÑлÑÑаÑе Ñего плиÑа полноÑÑÑÑ Ð½Ðµ ÑÑнкÑиониÑÑÐµÑ Ð»Ð¸Ð±Ð¾ ÑабоÑÐ°ÐµÑ Ñ Ð¿ÐµÑебоÑми.

Ðак ÑÑо пÑоÑвлÑеÑÑÑ? ÐÑи нажаÑии кнопки Ñозжига загоÑаеÑÑÑ Ð¾Ð´Ð½Ð° из конÑоÑок, но ÑÑÐ¾Ð¸Ñ Ð¾ÑпÑÑÑиÑÑ ÐµÐµ â Ð¿Ð»Ð°Ð¼Ñ Ð³Ð°ÑнеÑ. ÐÑли Ñакое пÑоиÑÑодиÑ, можно попÑобоваÑÑ Ð¿Ð¾ÑиÑÑиÑÑ Ð´Ð°ÑÑик наждаÑной бÑмагой Ñ Ð¼ÐµÐ»ÐºÐ¸Ð¼ зеÑном. ÐÑли же ÑезÑлÑÑÐ°Ñ Ð½Ðµ измениÑÑÑ, или измеÑÐµÐ½Ð¸Ñ ÑеÑмопаÑа пÑÐ¾Ð¸Ð·Ð²Ð¾Ð´Ð¸Ñ Ð½ÐµÑоÑно, ÑкоÑее вÑего, нÑжна замена ÑеÑмопаÑÑ.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Термопара: что это такое
Статическое электричество и защита от него