Что такое анод и катод

Механизм электрической проводимости

Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.

Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.

Дырка

Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.

Электронная и дырочная проводимость

Энергетические зоны

Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:

  • Зона проводимости;
  • Запрещенная зона;
  • Зона валентности.

Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.

Энергетические зоны

Подвижность

При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в растворе электролита в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Гальванотехника

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

Электропроводимость элементов

Собственной проводимостью полупроводника называется свойство, обусловленное носителями, образовавшимися в следствие перехода электронов из валентной зоны в зону проводимости. При температуре, близкой к абсолютному нулю, все уровни в валентной зоне полностью заполнены, а в зоне проводимости – свободны, и полупроводник по свойствам близок к диэлектрику.

Указание в таблице Менделеева

Повышение температуры приводит к тому, что часть электронов из валентной зоны переходит в зону проводимости. Каждый подобный электрон оставляет после себя в валентной зоне свободное место – дырку, рассматриваемую как эквивалентный частице положительный заряд. Следовательно, электрон и дырка рождаются одновременно – парой.

Свойства особого типа проводимости обусловлены наличием примесей. Введение примеси (порядка 0,01%) изменяет энергетическую структуру полупроводника, в запрещенной зоне появляются локальные энергетические состояния.  Этот процесс получил научное название – легирование. То есть, процесс, подразумевающий внедрение в состав основного вещества определенных добавок и примесей. Легирование используется во время производства полупроводниковых приборов и деталей. Главная задача этого процесса – изменить концентрацию носителей внутри зарядов. Для этого можно воспользоваться имплантацией ионов или трансмутационным легированием.

Электрохимия и гальваника

В электрохимии есть два основных раздела:

  1. Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
  2. Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.

Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?

  • Анод – электрод на котором наблюдается окислительная реакция, то есть он отдаёт электроны. Электрод, на котором происходит окислительная реакция – называется восстановителем.
  • Катод – электрод на котором протекает восстановительная реакция, то есть он принимает электроны. Электрод, на котором происходит восстановительная реакция – называется окислителем.
READ  Рекуперация или преобразование кинетической энергии торможения

Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны.

Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде. В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду)

Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус

В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду). Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.

Внимание: ток всегда втекает в анод!

Или то же самое на схеме:

Сферы применения и назначение

Сферы применения полупроводниковых диодов очень обширны. Сегодня без них тяжело представить работу большинства электрических приборов, и это неудивительно. Элементы задействуются для изготовления диодных мостов, а также следующих приспособлений:

  1. Устройств для защиты приборов от неверной полярности или перегрузок.
  2. Переключателей.
  3. Систем диодной искрозащиты.

Что касается диодных мостов, то они представляют собой устройство из четырех, шести или двенадцати соединенных диодов (точное количество диодов определяется типом схемы, которая бывает 1-фазной, 3-фазной полумостовой или 3-фазной полномостовой). Система используется в качестве выпрямителя и зачастую устанавливается в генераторах автомобилей. Дело в том, что применение такого моста позволило существенно уменьшить устройство и сделать его более надежным.

Диодные детекторы состоят из диодов и конденсаторов, что позволяет осуществлять модуляцию с низкими частотами из разных сигналов, включая амплитудно-модулированный радиосигнал. Устройства незаменимы для функционирования различных бытовых приборов, например, телевизор или радиоприемник. Также с помощью полупроводниковых диодов можно обеспечить полноценную защиту от нарушения полярности при запуске съемных входов и перегрузках.

Задача переключателей на основе диодов заключается в коммутации высокочастотных сигналов. Для управления схемой используется постоянный электроток, разделение частот и подача сигнала к конденсаторам. Также на основе диодов создается мощная искрозащита, предотвращающая перегрузки и отклонения от допустимого предела напряжения.

Катод в вакуумных приборах

Изделия этой категории выполняют свои функции следующим образом.  Катод – это генерирующий элемент, который отличается относительно малой работой для выхода электронов. Повышают эффективность данного компонента с помощью нагрева.

Ток через центральную часть проходит при соответствующей полярности подключения

Эта схема демонстрирует прямую зависимость применяемых терминов от движения электронов. В некоторых вакуумных приборах между анодом и катодом устанавливают сетчатую перегородку, которой регулируют силу тока и соответствующий коэффициент усиления.

Модифицированный вариант – электронно-лучевая трубка (ЭЛТ)

В типичной конструкции применяют несколько анодов, которые разгоняют электроны и обеспечивают фокусировку луча. Изменением напряжения на горизонтальных (вертикальных) пластинах перемещают поток в нужном направлении. Экран изнутри покрыт слоем люминофора, который светится в видимом диапазоне спектра при попадании заряженных частиц.

Для нагрева применяют прямые и косвенные методики. Катод накрывают модулятором. Это изделие создают в форме стакана с отверстием в центральной части дна. Сюда подают отрицательный потенциал, который оказывает существенное влияние на энергетические параметры пучка и силу свечения.

К сведению. При повышении мощности электронной пушки сфокусированный поток можно использовать для локального нагрева, сварки. Такие технологии обеспечивают высокое качество соединений. В соответствующем исполнении они пригодны для создания оружия.

Вольт-амперная характеристика (ВАХ)

Вольт-амперная характеристика диодов вакуумного типа состоит из трёх участков:

  1. Начальный, нелинейный.

Характеризуется медленным возрастанием тока и повышением уровня напряжения на анодном электроде, что рассматривается как следствие оказываемого электронным облаком (с отрицательным зарядом) сопротивления. Уровень тока на аноде весьма низок, но он увеличивается по экспоненте вместе с напряжением. Это происходит благодаря неоднородности скоростей движущихся электронов. Чтобы прекратить анодный ток потребуется отрицательное, запирающее напряжение на аноде.

  1. Закон степени 3/2-х. Второй участок.

Проявляется взаимозависимость тока и напряжения на аноде в соответствии с законом степени 3/2-х, где одна из переменных находится в зависимости от роста катодной температуры.

  1. Последний, насыщение.

Если уровень напряжения продолжает увеличиваться, то происходит замедление, а затем и прекращение роста тока, поскольку все электроны приникают к аноду, эмиссионный потенциал катода израсходован.Ток, который при этом устанавливается на аноде, называется током насыщения.

Вставка 1. Свойство электронных пучков

В технике очень важное значение имеет использование так называемых электронных пучков. Определение. Электронный пучок – поток электронов, длина которого много больше его ширины

Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3)

Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).

READ  Правила и особенности организации ландшафтного освещения на дачном участке

Рис. 3. Электронная пушка

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке

Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников

— При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).

Рис. 4. Снимок, сделанный при помощи рентгеновского излучения (Источник)

— При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.

— Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):

Рис. 5

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Рис. 6. Использование электрода косвенного накаливания

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.

Виды полупроводников

Множество веществ, к которым можно отнести полупроводники, классифицируется по величине и характеру проводимости.

По характеру проводимости

В силу того, используется чистое вещество либо, в которое внесены примеси, проводимость может иметь различный характер.

Собственная проводимость

В силу разных причин в чистых материалах могут появляться свободные электроны и дырки. В результате образуется собственная проводимость.

Важно! Собственная проводимость характеризуется равной концентрацией дырок и электронов. Собственная проводимость германия

Собственная проводимость германия

Примесная проводимость

Большая часть полупроводников, образованных четырехвалентными атомами, имеет собственную проводимость. При целенаправленном внесении примесей веществ третьей или пятой валентности получаются кристаллы, обладающие примесной проводимостью, в которых количество дырок и электронов прямо зависит от типа и количества примесных атомов на единицу объема чистого вещества.

По виду проводимости

Выше было рассмотрено, что в полупроводниках в процессе переноса заряда участвуют не только «традиционные» электроны, но и условные положительные заряды – дырки. Поэтому полупроводниковые материалы имеют два типа проводимости.

Электронные полупроводники (n-типа)

Присутствие в четырехвалентном веществе пятивалентной примеси приводит к тому, что пятый электрон примеси вынужден переместиться на более высокую орбиту, в результате чего на его освобождение требуется небольшое количество энергии.

Такие примесные полупроводники называют веществами n-типа, от слова «negative» – отрицательный. Примеси в данном случае называют донорными, так как они способствуют появлению в веществе свободных электронов.

Дырочные полупроводники (р-типа)

При добавлении трехвалентной примеси возникает противоположная ситуация, когда в кристаллической решетке четырехвалентного материала примесь забирает недостающий электрон, а в основном веществе образуется дырка. Такие примеси именуют акцепторными, а примесный полупроводник, соответственно, называется p-типа, поскольку «positive» – положительный.

Общая информация

Следует отметить, что современные полупроводниковые диоды создаются на основе германия или селена, как и более ста лет назад. Эти материалы обладают специфической структурой, которая позволяет применять элементы для модернизации схем и электроприборов, а также проводить преобразование разных токов.

В мире существуют разные типы таких изобретений, которые отличаются материалом изготовления, принципом действия и сферами применения. Особым спросом пользуются плоскостные и поликристаллические выпрямители, представляющие собой аналоги мостов. Они взаимодействуют посредством двух контактов.

Что касается плюсов приборов, то к ним следует отнести:

  1. Полную взаимозаменяемость. Вышедший из строя элемент можно заменить любым другим с такими же свойствами и принципом работы. Особых требований к выбору точно такой же модели нет.
  2. Высокую пропускную способность.
  3. Дешевизну и доступность. Продаются полупроводниковые диоды в каждом магазине с электротехническими товарами. Стоимость такой продукции составляет от 50 рублей. К тому же их можно изъять своими руками из схем старых устройств.

Электровакуумный диод

Помимо вакуумных полупроводников были созданы также электровакуумные диоды.

Под этим названием подразумевается двухэлектродная вакуумная электронная лампа. Конструкция этого устройства сходна с диодом вакуумного типа. На деле они практически не отличаются. Единственный несовпадающий момент заключается в том, что в электровакуумном диоде роль катодного электрода исполняет w-подобная, либо ровная нить.

В процессе функционирования диода температурный уровень нити должен подниматься, пока не достигнет определённого градуса. В этот момент запускается процесс термоэлектронной эмиссии. Когда аноды электроды получают напряжение со знаком «минус», происходит перенаправление электронов в обратную сторону, к катоду. В момент, когда на анод начинает поставляться напряжение со знаком «плюс», отсоединившиеся электроны вновь движутся к анодному электроду. Это провоцирует возникновение тока.

READ  Как перевести амперы в ватты и обратно?

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Как определить анод и катод

Электрическая схема катода и анода:

Различие между катодом и анодом основано исключительно на токе, а не на напряжении. Металл, используемый для катода, имеет значительно большее количество электронов, чем нейтроны или протоны.

Например, один из потребителей энергии находится в прямом включении. Далее, ток по аноду из внешней цепи проникает в элемент. Во внешнюю цепь прямо через катод из элемента выходит электрический ток. Это чем-то напоминает перевёрнутое изображение. Если данные обозначения сложные, то тут разобраться с ними могут только химики. Теперь надо сделать обратное включение. В этом случае диоды полупроводникового типа почти не будут проводить электрический ток. Тем не менее, есть вероятность обратного пробоя у элементов.

Электровакуумные диоды (например, радиолампы) совсем не обладают способностью проводить ток обратного типа. Условно принято считать, что ток через них не протекает. В связи с этим формально выводы анода и катода у диодов не отвечают за выполнение этих функций.

При катодной защите металлический анод электрически связан с защищаемой системой и частично разъедает или растворяет металл защищаемой системы. Этот металлический анод большей степени реагирует на коррозионную среду защищаемой системы. Корпус железного или стального судна может быть защищен цинковым анодом, который растворяется в морской воде и предотвращает коррозию корпуса.

Менее очевидным примером такого типа защиты является процесс цинкования железа. Такой процесс покрывает железные конструкции (такие как ограждение) покрытием из металлического цинка. Пока цинк остается неповрежденным, железо защищено от коррозии. С течением времени цинковое покрытие становится поврежденным, в результате потрескивания или физического повреждения.

Использование в радиотехнике

Каждый специалист, техник, обладающий познаниями в электронике, знает, что абсолютно вся современная электроника основана на применении полупроводниковых элементов. Любой аналоговый или цифровой (дискретный) прибор имеет в своей основе схемы, построенные с применением диодов и транзисторов.

Полупроводниковый диод

Одно из первых устройств, использующих свойства полупроводимости, – это полупроводниковый диод. Конструкция заключается в соединении пары полупроводников с разными типами проводимости.

В результате физических процессов движения электронов и дырок на границе веществ возникает электрическое поле, и образуется так называемый p-n переход.

P-n переход

P-n переход обладает свойством односторонней проводимости, то есть ток через диод возникает только при подключении p-области (анода) к полюсу источника напряжения, а n-области (катода) – к минусу.

Вольт-амперная характеристика диода

В обратной полярности ток также имеется, но его величина, по сравнению с прямым, намного меньше. Стабилитрон – вид диода, основная область его работы находится на обратной ветви характеристики. Параметр p-n перехода подобран таким образом, что в узкой области обратного тока напряжение на стабилитроне практически не меняется.

Первый диод – детектор, использовался еще в то время, когда теория полупроводников находилась в зачаточном состоянии.

Разнообразные диоды

Транзистор

Транзистор, или, как раннее его называли, триод, имеет две области из материала с одинаковой проводимостью и тонкую область полупроводника с другой. Принцип работы транзистора заключается в том, что малый ток в тонкой области, называемой базой, может управлять гораздо большим током через другие области, соответственно, коллектор и эмиттер.

В зависимости от схемы включения, транзистор может иметь различное назначение: как усилительный, генераторный и преобразовательный полупроводниковый элемент.

Применение полупроводников не ограничивается вышеперечисленными областями. Существуют изделия с тремя и более p-n переходами или вообще без них. Варистор – резистор с сопротивлением, зависящим от величины протекающего тока, тоже полупроводниковый элемент.

Виды транзисторов

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим . Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется .

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: