Постоянный и переменный ток

Технические и экономические проблемы перехода на постоянный ток

Несмотря на то, что высоковольтная передача постоянного тока в настоящее время является проверенной и общепринятой технологией, по-прежнему существует ряд технических и экономических вопросов, в том числе о сетях с низким напряжением, на которые необходимо ответить:

  • Сможет ли постоянный ток заменить переменный в широком спектре применений?
  • Будут ли обе технологии продолжать существовать одновременно друг с другом?
  • Как могло бы выглядеть подобное сосуществование?
  • Какие технические и экономические препятствия необходимо преодолеть?
  • Какие меры безопасности будут необходимы и одновременно эффективны?
  • Какие изменения потребовал бы переход на постоянный ток в сети и как это повлияет на потребителей?

Преимущества такого «переключения» настолько значительны, что не может быть никаких сомнений в том, что приближается смена парадигмы. Обладая серьезным опытом в области разработки соединительных технологий, LAPP сразу же занимает здесь ведущее положение.

Компания является ассоциированным партнером в рамках проекта DC-INDUSTRIE, входящего в 6-ю программу исследований энергетики, которая проводится федеральным министерством экономики и энергетики Германии (BMWi). Исследовательский проект DC-INDUSTRIE посвящен вопросу о том, как можно создать сети постоянного тока с центральным процессом конверсии в качестве альтернативы энергосбережению, особенно при эксплуатации оборудования на производственных линиях, а также о том, как лучше использовать возобновляемые источники энергии.

Постоянный ток: возрождение старой технологии

Solar Smart Grid на Гаити

Сегодня, спустя 86 лет после смерти Эдисона, есть признаки того, что великий изобретатель не так уж и ошибался относительно постоянного тока, как когда-то считали люди. Идеи Эдисона становятся снова актуальными, так как ряд последних событий делает постоянный ток более привлекательным.

Раньше электричество производилось переменным током в генераторах крупных угольных или атомных электростанций, а также в гидротурбинах. Они распределяют энергию через сеть переменного тока. Трансформаторы позволяют увеличить напряжение до нескольких сотен тысяч вольт, удерживая ток в кабелях. Но сейчас ряд поставщиков электроэнергии становятся на путь использования постоянного тока. К ним относятся, например, солнечные электростанции, которые обычно поддерживаются батареями или электрохимическими системами хранения. Преобразование постоянного тока в переменный неизбежно связано с потерями, что делает сеть постоянного тока лучшим выбором для этих поставщиков.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 — 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.

Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения — это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали — Почему в нашей розетки течет переменный ток, а не постоянный?

{SOURCE}

Виды тока

Существует два вида тока — постоянный и переменный. Чтобы понять разницу и определить, постоянный или переменный ток находится розетке, следует вникнуть в некоторые технические особенности. Переменный ток имеет свойство изменяться по направлению и величине. Постоянный же ток обладает устойчивыми качествами и направлением передвижения заряженных частиц.

Переменный ток выходит из генераторов электростанции с напряжением, составляющим 220–440 тысяч вольт. При подходе к многоквартирному зданию ток уменьшается до 12 тысяч вольт, а на трансформаторной станции преобразуется в 380 вольт. Напряжение между фазами именуют линейным. Низковольтный участок понижающей подстанции выдает три фазы и нулевой (нейтральный) провод. Подключение энергопотребителей осуществляется от одной из фаз и нулевого провода. Таким образом, в здание заходит переменный однофазный ток с напряжением 220 вольт.

Схема распределения электроэнергии между домами представлена ниже:

В жилище электричество поступает на счетчик, а далее — через автоматы на коробки каждого помещения. В коробках имеется разводка по комнате на пару цепей — розеточную и осветительной техники. Автоматы могут предусматриваться по одному для каждого помещения или по одному для каждой цепи. С учетом того, на сколько ампер рассчитана розетка, она может быть включена в группу или быть подключенной к выделенному автомату.

Переменный ток составляется примерно 90% всей потребляемой электроэнергии. Столь высокий удельный вес вызван особенностями этого вида тока — его можно транспортировать на значительные расстояния, изменяя на подстанциях напряжение до нужных параметров.

Источниками постоянного тока чаще всего являются аккумуляторные батареи, гальванические элементы, солнечные панели, термопары. Постоянный ток широко используется в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, радио- и телевизионной аппаратуре. Постоянный ток применяется в контактных сетях железнодорожного транспорта, а также на корабельных установках.

Обратите внимание! Постоянный ток используется во всех электронных приборах. На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами

На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Переменный ток и его свойства

Переменный ток циклически меняет направление и силу, характеризуется следующими параметрами:

  1. частота. Число циклов (периодов) в секунду. Например, частота тока в сети составляет 50 Гц;
  2. амплитуда. Максимальное отклонение напряжения и силы тока от нуля. Так, сетевое напряжение 50 раз в секунду меняет значение от -311 В до 311 В;
  3. действующее значение. Это напряжение или сила эквивалентного постоянного тока, то есть такого, который вызывает в проводнике такое же тепловыделение, как и данный переменный. К действующему значению прибегают с целью упрощения расчетов: работать с постоянно изменяющимися величинами крайне неудобно. Например, если в формуле записать действительное значение переменного сетевого напряжения, изменяющегося от -311 В до 311 В по синусоидальному закону, получится уравнение с тригонометрическими функциями либо комплексными числами. Гораздо проще оперировать постоянным действующим значением в 220 В;
  4. форма. Сетевой ток, производимый механическими генераторами, имеет синусоидальную форму. На выходе инвертора она может быть остроугольной, ступенчатой и т. д.

Переменный ток уступает постоянному в следующем:

  1. он менее качественный. Так, сварной шов получается более прочным и надежным, если сварка осуществлялась постоянным током. Качественнее работает и электроника;
  2. при частоте в 50 Гц — более опасен. Нарушения в организме вызывает уже при силе в 50 мА, тогда как постоянный — при силе в 300 мА. Однако, с повышением частоты переменный ток становится уже не таким опасным. Так, выдающийся изобретатель Никола Тесла на публичных опытах пропускал через себя переменный ток большого напряжения (светилась зажатая в руке лампа), предварительно подняв его частоту до нескольких мегагерц;
  3. сопротивление проводников переменному току выше, чем постоянному. Разъяснение этому будет дано ниже.

Но есть у переменного тока и полезная особенность: создаваемое им магнитное поле также является переменным, а значит, оно способно наводить в проводниках ЭДС (закон электромагнитной индукции).

Переменный ток делает возможным работу таких устройств:

  1. трансформаторы. За счет повышения напряжения значительно сокращаются потери в линиях электропередач;
  2. индукционные нагреватели;
  3. дроссельные фильтры. Дроссель — катушка. Создаваемое ею переменное магнитное поле противодействует переменному току, то есть дроссель выступает в качестве сопротивления. От индуктивности катушки зависит частота тока, которому она сильнее всего противодействует. Эта особенность позволяет глушить дросселем высокочастотные помехи в сети.

Наличием переменного магнитного поля объясняется и упомянутое выше увеличение сопротивления проводника. В нем полем также наводится ЭДС, противодействующая данному переменному току. Эта ЭДС выше в центре проводника, где сконцентрированы силовые линии поля, соответственно, носители заряда вытесняются наружу (поверхностный или скин-эффект).

В итоге вместо всего сечения проводника ток пропускает только некоторая его часть, отчего и возрастает сопротивление. Еще отличие переменного тока от постоянного — способность протекать по цепи с последовательно включенным конденсатором. Для постоянного тока разрыв между обкладками непреодолим, тогда как переменный протекает почти свободно, заряжая обкладки то с одним, то с другим знаком.

Конденсатор, как и катушка, каждый раз накапливает энергию и затем возвращает ее в цепь, так что он тоже оказывает переменному току сопротивление, которое зависит от емкости конденсатора.

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

Отметками «а» и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка меняющегося тока. Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом подключении приборов потребления к электрощитам и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт. На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. Выполняется подача в отдельный дом и на вашу квартиру попадает напряжение однофазного типа. Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Постоянный и переменный ток

Любое явление, которое нельзя увидеть или «пощупать» непосредственно, легче понять с помощью аналогий. В случае с электричеством можно рассмотреть воду в трубе как самый близкий пример. Вода и электричество текут по своим проводникам — проводам и трубам.

  • Объём протекающей воды — сила тока.
  • Давление в трубе — напряжение.
  • Диаметр трубы — проводимость, обратная сопротивлению.
  • Объём на давление — мощность.

Давление в трубе создаётся насосом — сильнее насос качает, давление выше, воды течёт больше. Диаметр трубы больше — сопротивление меньше, воды протекает больше. Источник выдаёт напряжение больше — электричества протекает больше. Провода толще — сопротивление меньше, ток выше.

Для примера можно взять любой химический источник питания — батарейку или аккумулятор. На его клеммах имеются обозначения полюсов: плюс или минус. Если к батарейке, через провода и выключатель подключить соответствующую лампочку, то она загорится. Что при этом происходит? Минусовая клемма источника испускает электроны — элементарные частицы, несущие отрицательный заряд. По проводам, через разъёмы выключателя и спираль лампы они движутся к положительной клемме, стремясь уровнять потенциал клемм. Пока цепь замкнута по разъёмам выключателя и батарейка не села — по спирали бегут электроны и лампочка горит.

По многим причинам применение только постоянного напряжения нецелесообразно: взять хотя бы невозможность использовать трансформаторы. Поэтому к настоящему времени сложилась система подачи и потребления переменного напряжения питания, под которую и создаются бытовые приборы.

Существует простой ответ, какова разница между постоянным и переменным током. В этом примере с лампочкой на одной клемме источника питания напряжение всегда будет равно нулю. Это нулевой провод, а вот на другом — фазном, напряжение изменяется. И не только по величине, но и по направлению — с плюса на минус. Электроны не текут стройными рядами в одну сторону, наоборот мечутся вперёд-назад, одни и те же частицы пробегают по спирали накаливания туда-сюда и производят всю работу. Изменение направления движения электричества и даёт само понятие «переменный».

Переменный и постоянный ток: в чем разница, история развития, применение

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках? Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток – трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Характеристики постоянного тока

Direct Current или DC так по-английски обозначают подобную разновидность, для которой присуще свойство на протяжении любого отрезка времени не менять свои параметры. Маленькая горизонтальная черточка или две параллельные со штриховым исполнением одной из них – графическое изображение постоянного тока.

Область применения – большинство моделей бытовых электроприборов и электронных устройств, включая компьютерную технику, телевизоры и гаджеты, использование в домашних сетях и автомобилях. Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания.

В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов.

Электрические аккумуляторы

Это источник постоянного тока многоразового использования, который действует не постоянно, а до следующего заряда. Они по своей химической природе подразделяются на типы:

  • свинцово-кислотные;
  • литий-ионные (литиевые);
  • никель-кадмиевые;
  • никелево-железные.

Свинцово-кислотные модели применяются в автомобилях, источниках бесперебойного питания, транспорте, промышленности, в отрасли связи и телекоммуникаций.

Литий-ионные батареи нашли широкое применение в мобильной связи, электроинструментах, системах телекоммуникаций, а также автономном и аварийном электроснабжении. Вот только небольшой перечень спектра их составов:

  • литий-титанатовый;
  • тионилхлоридный;
  • литий-кобальтовый;
  • литий-марганцевый;
  • литий-фосфат железный;
  • литий-полимерный;
  • литий-диоксид серный;
  • литий-диоксид марганцевый.

Литий-ионные источники тока

Никель-кадмиевые аккумуляторы

Никелево-железные щелочные – очень надёжный тип источника. Пагубные для свинцово-кислотных батарей глубокие разряды, частые недозаряды не выводят их из строя. Они используются в тяговых транспортных цепях, в цепях резервного питания.

Тяговый никель-железный аккумулятор

Переменный ток

Чаще всего, впрочем, применяют именно его. Здесь среднее значение силы и напряжения за определенный период равны нулю. По величине и направлению он постоянно изменяется, причем с равными промежутками времени.

Чтобы вызвать переменный ток, используют генераторы, в которых во время электромагнитной индукции возникает электродвижущая сила. Это осуществляется при помощи магнита, вращаемого в цилиндре (роторе), и статора, выполненного в виде неподвижного сердечника с обмоткой.

Переменный ток используют в радио, телевидении, телефонии и многих других системах ввиду того, что его напряжение и силу возможно преобразовывать, почти не теряя энергию.

Широко применяют его и в промышленности, а также в целях освещения.

Он может быть однофазным и многофазным.

Переменный ток, который изменяется согласно синусоидальному закону, является однофазным. Он изменяется в течение определенного промежутка времени (периода) по величине и направлению. Частота переменного тока является числом периодов за секунду.

Во втором случае самое большое распространение получил трехфазный вариант. Это система из трех электроцепей, которые имеют одинаковую частоту и ЭДС, сдвинуты по фазе на 120 градусов. Ее используют для питания электрических двигателей, печей, осветительных приборов.

Многими разработками в сфере электричества и практическим их применением, а также воздействием на переменный ток высокой частоты человечество обязано великому ученому Николе Тесла. До сих пор не все его труды, оставшиеся потомкам, являются познанными.

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Коэффициент мощности

Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ – угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

Разница между постоянным и переменным током в расчетах очевидна – они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.

Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку – как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Постоянный тoк

Для ответа на вопрос о том, какой ток называется постоянным, достаточно прочитать вышеприведённое общее определение электрического тoка и краткое определение постоянного тока. Итак, постоянный ток — это упорядоченное движение электрических частиц, в процессе которого эти частицы не меняют своего направления, и величина тока не изменяется.

Также это явление можно описать более широко, опираясь на физические процессы, происходящие при этом. Наверняка каждый помнит понятия «плюса» и «минуса» из школьного курса физики, то есть понятия полюсов, заряженных разноименными зарядами. Для понимания процесса протекания нашего электротока можно представить обыкновенную пальчиковую батарейку и провод, который одним концом соединяется с положительным полюсом, а другим — с отрицательным (делать такое на практике крайне нежелательно из-за возможности испортить источник питания, а в случае с большими аккумуляторами даже получить ожоги и травмы).

Итак, как только второй конец провода будет замкнут, то есть присоединён к полюсу, в цепи сразу появится движение электронов. От отрицательного полюса, то есть полюса, на котором наблюдается избыток элементарных электрических зарядов, эти заряды станут перетекать к положительному полюсу, где их, наоборот, дефицит. Можно сказать, что это движение призвано сбалансировать количество зарядов с обеих сторон. Когда это произойдёт, электроны перестанут двигаться, то есть батарейка разрядится.

Как обозначается ток и закон Ома

Если рассматривать пример с батарейкой, описанный выше, с точки зрения физики, то в нём будут фигурировать три составляющие — сила тoка, напряжение и сопротивление. Говоря о том, как обозначается постоянный ток, подразумевается именно сила тoка. Обозначается она буквой I. Напряжение — буквой U, а сопротивление — R.

Три этих характеристики легли в основу известнейшего в электротехнике и незаменимого почти при любых расчётах электрических схем закона, называемого законом Ома, в честь его создания. Кстати, единицы измерения сопротивления носят такое же имя — Омы.

Звучит этот закон следующим образом — сила тoка I прямо пропорциональна напряжению U и обратно пропорциональна сопротивлению R: I=U/R.

Для измерения всех вышеперечисленных величин существуют специальные приборы. Для тoка — амперметр, для напряжения — вольтметр, для сопротивления — вольтметр. Например, можно измерить силу тока, если подключить амперметр последовательно элементу, на котором мы и должны найти указанную характеристику. Существую приборы, комбинирующие в себе все вышеперечисленные средства измерения — мультиметры.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Постоянный и переменный ток
Применение картона и гофрокартона в ресторанной индустрии.