Расчет защитного заземления

Предельное сопротивление защитных устройств

В безопасной для людей системе защитные устройства должны срабатывать, как только напряжение неисправности в системе достигает значения, которое может быть опасным для них. Для расчета этого параметра можно использовать указанные выше данные предельного напряжения, выберем среднюю величину U = 25 В переменного тока.

Выключатели остаточного тока, установленные в жилых помещениях, обычно не сработают на землю, пока ток короткого замыкания не достигнет 500 мА. Поэтому согласно закону Ома, с U = R1 R = 25 В / 0,5 А = 50 Ом. В связи с чем для соответствующей защиты безопасности людей и имущества земля должна иметь сопротивление менее 50 Ом, или R earth

«Электрик»

Первый программный продукт, который хотелось бы рассмотреть, называется «Электрик». Мы уже говорили о нем, когда рассматривали лучшие программы для расчета сечения кабеля. Так вот и с вычислениями параметров заземляющего контура «Электрик» может запросто справиться. Преимущество данного продукта заключается в том, что он достаточно прост в использовании, русифицирован и к тому же есть возможность бесплатного скачивания. Увидеть интерфейс программы вы можете на скриншотах ниже:

Все, что вам нужно – задать исходные данные, после чего нажать кнопку «Расчет контура». В результате вы получите не только подробную методику вычислений с используемыми формулами, но и чертеж, на котором будет изображен готовый контур заземления. Что касается точности расчетных работ, то тут мы рекомендуем использовать только самые последние версии программы, т.к. в устаревших версиях множество недоработок, которые были устранены со временем. Если вам нужно рассчитать заземляющий контур для частного дома либо более серьезных сооружений, к примеру, котельной либо подстанции, рекомендуем использовать данный продукт.

Расчет заземления в программе Электрик показан на видео:

Задачи функциональной защиты

Функциональное заземление не обеспечивает безопасность, как следует из названия, вместо этого оно создает бесперебойную работу электрических систем и оборудования. Функциональное заземление рассеивает токи и источники помех на земные тестовые адаптеры, антенны и другие устройства, которые принимают радиоволны.

Они определяют общие опорные потенциалы между электрооборудованием и устройствами и, таким образом, предотвращают различные сбои в частных домах, например, такие как мерцание телевизора или света. Функциональное заземление никогда не может выполнять задачи защитного.

Все требования по защите от поражения электрическим током можно найти в государственных стандартах. Создание защитного заземления является жизненно важным и поэтому всегда имеет приоритет над функциональным.

Экономное расходование материала

Так как сечение металла — не самый важный параметр, рекомендуется приобретать материал с наименьшей площадью сечения. Однако при этом нужно оставаться в пределах минимально рекомендуемых значений. Наиболее экономичные (но способные выдержать удары кувалды) варианты металлоизделий:

  • трубы диаметром 32 миллиметра и толщиной стенок от 3 миллиметров;
  • уголок равнополочный (сторона — 50 или 60 миллиметров, толщина — 4 или 5 миллиметров);
  • круглая сталь (диаметр от 12 до 16 миллиметров).

В качестве металлосвязи оптимальным выбором станет полоса из стали толщиной 4 миллиметра. В качестве альтернативы подойдет 6-миллиметровый стальной прут.

Обратите внимание! Горизонтальные стержни приваривают к вершинам электродов. Поэтому к расчетной дистанции между электродами следует добавить еще 18 – 23 сантиметра

Наружный участок заземления можно изготовить из 4-миллиметровой полосы (ширина — 12 миллиметров).

Какие измерения выполняет лаборатория

   Среди непосвященных людей часто возникает путаница с основными работами и терминами, выполняемых подобными организациями

Поэтому заострим внимание на их трактовке:.    Как видим, все три вида работ очень похожи по названию, но они выполняются по разным технологиям, преследуя собственные, уникальные цели

   Как видим, все три вида работ очень похожи по названию, но они выполняются по разным технологиям, преследуя собственные, уникальные цели.

   Измерения сопротивления заземления предназначены выявить качество связей корпусов металлических приборов, к которым может прикоснуться человек, с потенциалом земли через заземлительное устройство. При этом измеряется электрическое сопротивление этого участка специальными приборами типа М416 или его современными аналогами различных модификаций.

   Проверки сопротивления заземления используются для анализа состояния молниезащиты здания. Ее оценка проводится для определения сопротивления контура при наихудших условиях эксплуатации с целью определения степени износа всей конструкции и предоставления рекомендаций по ее восстановлению.

   Для замера устанавливают штыри-электроды в нескольких точках местности и подают между ними и контуром разность потенциалов.

   Измерения сопротивления изоляции подразумевают:

   Все эти работы требуют специального дорогостоящего оборудования, которого у обычного электрика нет в пользовании.

А вот теперь непосредственно формулы

С формой контура и с размерами элементов мы определились. Теперь можно загнать требующиеся параметры в специальную программу для электриков или воспользоваться приведенными ниже формулами. В соответствии с типом заземлителей выбираем формулу для производства расчетов:

Или воспользуемся универсальной формулой для расчета сопротивление одного вертикального стержня:

Для вычислений потребуются вспомогательные таблицы с приблизительными значениями, зависящими от состава грунта, его усредненной плотности, способности удерживать влагу и от климатической зоны:

Рассчитаем количество электродов, не учитывая значение сопротивления заземляющего горизонтального проводника:

Вычислим параметры горизонтального элемента системы заземления – горизонтального проводника:

Подсчитаем сопротивление вертикального электрода с учетом значения сопротивления горизонтального заземлителя:

Согласно результатам, полученным в результате усердных вычислений, запасаемся материалом и планируем время для устройства заземления.

Ввиду того что наибольшим сопротивлением наше защитное заземление будет обладать в засушливый и морозный период, его сооружением желательно заняться именно в это время. На строительство контура при правильной организации потратить нужно будет пару дней. Перед засыпкой траншеи надо будет проверить работоспособность системы. Это лучше сделать, когда в почве меньше всего содержится влаги. Правда, зима не слишком располагает к труду на открытых площадках, и земляные работы осложняет замерзший грунт. Значит, займемся строительством системы заземления в июле или в начале августа.

READ  Как выбрать самый экономичный комнатный термостат для котла отопления

Как рассчитать контур заземления

Расчет заземляющего устройства электроустановок выполняется пошагово:

  1. Рассчитывают значение сопротивления группового заземлителя. Это можно найти в ПУЭ.
  2. Выяснять, каково удельное сопротивление грунта. Хорошо, если есть данные исследований специальной геологической организации. В противном случае придется использовать данные из таблиц.
  3. Определяют местоположение работ заземления и климатическую зону по соответствующей таблице.
  4. Находят коэффициент сезонности вертикального или горизонтального заземлителя, который зависит от его габаритов.
  5. В зависимости от количества заземлителей определяют коэффициент их использования.
  6. Рассчитывают сопротивление исходя из типа заземлителя.
  7. Находят сопротивление группового заземлителя.

Расчет заземляющего устройства и контура заземления должен производиться по формулам

Глина, суглинок, супесь (различия)

Рыхлые осадочные грунты, состоящие из глины и песка, классифицируются по содержанию в них глинистых частиц:

глина — более 30%. Глина очень пластичная, хорошо скатывается в шнур (между ладонями). Скатанный из глины шар сдавливается в лепешку без образования трещин по краям.

  • тяжелая — более 60%
  • обычная — от 30 до 60% с преобладанием глинистых частиц
  • пылеватая — от 30 до 60% с преобладанием песка
Тип грунта Ом*м
Разнообразные смеси глины и песка 150
Суглинок лесовидный 100
Глина полутвёрдая 60
Сланцы глинистые 55
Суглинок пластичный 30
Глина пластичная 20
Подземные водоносные слои 5
  • суглинок — от 10% до 30% глины. Этот грунт достаточно пластичен, при растирании его между пальцами не чувствуются отдельные песчинки. Скатанный из суглинка шар раздавливается в лепешку с образованием трещин по краям.
  • тяжелый — от 20 до 30%
  • средний — от 15 до 20%
  • легкий — от 10 до 15%
  • супесь (супесок) — менее 10% глины. Является переходной формой от глинистых к песчаным грунтам. Супесь наименее пластичная из всех глинистых грунтов; при ее растирании между пальцами чувствуются песчинки; она плохо скатывается в шнур. Скатанный из супеси шар рассыпается при сдавливании.

Калькулятор расчета заземления

Для того чтобы упростить расчеты, мы предлагаем вам воспользоваться простым и точным калькулятором расчета заземления.

https://www.youtube.com/watch?v=ytcopyrighten-GB

Наш онлайн-калькулятор расчета заземления учитывает все поправочные коэффициенты и работает на основании приведенных формул. Для того чтобы выполнить надежный расчет, вам необходимо заполнить поля программы правильно.

  • Грунт. Укажите верхний и нижний слой грунта, а также глубину.
  • Климатический коэффициент. Поправка в расчетах на основании климатической зоны:
    • I зона — от -20 до -15°С (Январь); от 16 до 18°С (Июль);
    • II зона — от -14 до -10°С (Январь); от 18 до 22°С (Июль);
    • III зона — от -10 до 0°С (Январь); от 22 до 24°С (Июль);
    • IV зона — от 0 до 5°С (Январь); от 24 до 26°С (Июль);
  • Вертикальные заземлители. Количество вертикальных заземлителей (предполагаем любой число, по умолчанию 5), их длина и диаметр.
  • Горизонтальные заземлители. Глубина заложения горизонтальной полосы, ширина полки и длина стержня (берется из расчета 1:3, 1:2 или 1:1 к длине вертикального заземлителя – чем больше, тем лучше).

Нажимая кнопку «Рассчитать» вы получите следующие показатели:

  • удельное электрическое сопротивление грунта;
  • сопротивление одиночного вертикального заземлителя;
  • длина горизонтального заземлителя;
  • сопротивление горизонтального заземлителя;
  • общее сопротивление растеканию электрического тока.

Последний параметр является определяющим. Следите, чтобы нормативное сопротивление (2 Ом — для 380 вольт; 4 Ом — для 220 вольт; 8 Ом — для 127 вольт) в электрических сетях было всегда больше, чем расчетное.

Тогда, перенеся все значения в калькулятор расчета заземления мы получим общее сопротивление на растекание равное 4,134 Ома.

Если в нашем частном доме однофазная сеть с напряжением в 220 Вт, то это значение недопустимо, так как этого заземления будет недостаточно.

Добавим еще один вертикальный электрод и получим значение 3,568 Ом. Это величина нам вполне подходит, а значит такое заземление гарантировано защитит вашу постройку и ее обитателей.

Если вы получаете значение близкое к критическому, то лучше увеличить количество или размер электродов. Помните, что расчет контура заземления крайне важен для безопасности!

Измерение заземления

Для измерения сопротивления заземления используются специальные измерительные приборы. Правом измерения заземления обладают организации с соответствующим разрешением. Обычно это энергетические организации и лаборатории. Измеренные параметры вносятся в протокол измерения и хранятся на предприятии (в цеху, на подстанции).

Прибор для измерения заземления

Расчет сопротивления заземления представляет сложную задачу, в которой необходимо учитывать множество условий, поэтому рациональнее воспользоваться помощью организаций, которые специализируются в данной области. Для решения задачи можно произвести расчеты на он-лайн калькуляторе, пример которых можно найти в интернете в свободном доступе. Программа калькулятора сама подскажет, какие данные необходимо учитывать при вычислениях.

МЕРЫ БЕЗОПАСНОСТИ ПРИ КОНТРОЛЕ ЗУ

Работы по измерениям характеристик ЗУ должны производиться в соответствии с действующими Правилами техники безопасности при эксплуатации электроустановок. Работы по измерениям электрических характеристик следует выполнять по нарядам.

При измерениях на действующих энергообъектах с использованием вынесенных токовых и потенциальных электродов должны приниматься меры к защите от воздействия полного напряжения на заземлителе при стекании с него тока однофазного КЗ на землю.

Персонал, производящий измерения, должен работать в диэлектрических ботах, диэлектрических перчатках, пользоваться инструментом с изолированными ручками.

READ  Электролитический конденсатор

При сборке измерительных схем следует сначала присоединять провод к вспомогательному электроду (токовому, потенциальному) и лишь затем к соответствующему измерительному прибору.

Строить или не строить?

В уже изрядно забытую пору скудного количества бытовых электроприборов владельцы частных домов редко «баловались» устройством заземления. Считалось, что с задачей отведения утечки электричества превосходно справятся естественные заземлители, такие как:

  • стальные или чугунные трубопроводы, если вокруг них не уложена изоляция, т.е. имеется непосредственный плотный контакт с почвой;
  • стальная обсадка водяной скважины;
  • металлические опоры оград, фонарей;
  • свинцовая оплетка подземных кабельных сетей;
  • арматура фундаментов, колонн, ферм, заглубленных ниже горизонта сезонного промерзания.

Обратите внимание, что алюминиевая оболочка подземных кабельных коммуникаций не может использоваться в качестве элемента заземления, т.к. покрыта антикоррозионным слоем

Защитное покрытие препятствует рассеиванию тока в грунте.

Оптимальным естественным заземлителем признан стальной водопровод, проложенный без изоляции. Благодаря значительной протяженности минимизируется сопротивление току растекания. К тому же наружный водопровод укладывают ниже отметки уровня сезонного промерзания. Значит, на параметры сопротивления не будут влиять морозы и засушливая летняя погода. В эти периоды уменьшается влажность грунта, и, как следствие, увеличивается сопротивление.

Стальной каркас подземных железобетонных конструкций может служить элементом системы заземления, если:

  • с глинистым, суглинистым, супесчаным и влажным песчаным грунтом контактирует достаточная по нормам ПУЭ площадь;
  • в период сооружения фундамента арматура в двух или более местах была выведена на дневную поверхность;
  • стальные элементы данного естественного заземления были соединены между собой сваркой, а не проволочной связкой;
  • сопротивление арматуры, играющей роль электродов, рассчитано согласно требованиям ПУЭ;
  • установлена электрическая связь с заземляющей шиной.

Без соблюдения перечисленных условий подземные ж/б сооружения не смогут выполнить функцию надежного заземления.

Из всего набора вышеперечисленных естественных заземлителей расчетам подлежат только подземные ж/б конструкции. Точно вычислить сопротивление растеканию тока трубопроводов, металлической брони и каналов подземных силовых сетей не представляется возможным. Особенно если их прокладка осуществлялась пару десятилетий назад, и поверхность существенно изъедена коррозией.

Эффективность естественных заземлителей определяется путем банальных измерений, для производства чего нужно вызвать сотрудника местной энергослужбы. Показания его прибора подскажут, нужен или нет владельцу загородной собственности повторный заземляющий контур в качестве дополнения к существующим мерам заземления, выполненным компанией-поставщиком электроэнергии.

При наличии на участке естественных заземлителей с соответствующими нормам ПУЭ значениями сопротивления, устраивать защитное заземление нецелесообразно. Т.е. если прибор «агента» энергоуправления показал меньше 4 Ом, организацию контура заземления можно отложить «на потом». Однако лучше перестраховаться и предупредить вероятные риски, для чего и сооружается искусственное заземляющее устройство.

Оборудование электрозащиты

Рост потребления электроэнергии во всех сферах жизни, дома и на работе, требует четких правил безопасности для жизнедеятельности человека. Многочисленные национальные и международные стандарты регулируют требования к строительству электрических систем для обеспечения безопасности людей, домашних животных и имущества при использовании электроприборов.

Оборудование электрозащиты, устанавливаемое во время строительства жилых и общественных объектов, должно регулярно проверяться, чтобы обеспечить надежную работу на протяжении многих лет. Нарушения правил безопасности в электрических системах могут иметь негативные последствия: угроза жизни людей, разрушение имущества или уничтожение проводки.

Нормами безопасности установлены следующие верхние пределы для безопасного касания человеком токоведущих поверхностей: 36 В переменного тока в сухих зданиях и 12 В переменного тока во влажных помещениях.

Факторы сопротивления заземления

https://www.youtube.com/watch?v=ytcreatorsen-GB

Расчет защитного заземляющего устройства зависит от многих условий, среди которых можно выделить основные, которые используются при дальнейших расчетах:

  • Сопротивление грунта;
  • Материал электродов;
  • Глубина закладки электродов;
  • Расположение заземлителей относительно друг друга;
  • Погодные условия.

Сам по себе грунт, за несколькими исключениями, обладает низкой электропроводностью. Данная характеристика меняется, в зависимости от содержания влаги, поскольку вода с растворенными в ней солями является хорошим проводником. Таким образом, электрические свойства грунта зависят от количества содержащейся влаги, солевого состава и свойств грунта удерживать в себе влагу.

Структура грунта

Распространенные типы грунта и их характеристики

Тип грунта Удельное сопротивление ρ, Ом•м
Скала 4000
Суглинок 100
Чернозем 30
Песок 500
Супесь 300
Известняк 2000
Садовая земля 50
Глина 70

Из таблицы видно, что удельное сопротивление может отличаться на несколько порядков. В реальных условиях ситуация осложняется тем, что на разных глубинах тип грунта может быть различным и без четко выраженных границ между слоями.

Материал электродов

Эта часть расчетов наиболее проста, поскольку при изготовлении заземления используется только несколько разновидностей материалов:

  • Сталь;
  • Медь;
  • Обмедненная сталь;
  • Оцинкованная сталь.

Наихудшие характеристики имеет ничем не покрытая сталь, поскольку слой коррозии (ржавчина) увеличивает переходное сопротивление на границе электрод-грунт.

Обмедненные электроды

Глубина закладки

От глубины закладки электродов зависят линейная протяженность границы касания электрода и грунта и величина слоя земли, который участвует в цепи протекания тока. Чем больше этот слой, тем меньшее значение сопротивления он будет иметь.

Данная характеристика наименее очевидна и трудна для понимания. Следует знать, что каждый электрод заземления имеет некоторое влияние на соседние, и чем ближе они будут расположены, тем меньше будет их эффективность. Точное обоснование эффекта довольно сложное, просто следует его учитывать при расчетах и строительстве.

Проще объяснить зависимость эффективности от количества электродов. Здесь можно привести аналогию с параллельно соединенными резисторами. Чем их больше, тем меньше суммарное сопротивление.

READ  Указатель напряжения, разновидности, функции, инструкции по использованию

Расположение заземлителей в один ряд

Погодные условия

Обратите внимание! Для того чтобы минимизировать влияние погодных условий, глубина закладки электродов должна быть ниже максимальной глубины промерзания зимой или доходить до водоносного слоя для исключения пересыхания

Важно! Последующие расчеты необходимо производить для наихудших условий эксплуатации, поскольку во всех иных случаях сопротивление заземления будет снижаться

Важно! Последующие расчеты необходимо производить для наихудших условий эксплуатации, поскольку во всех иных случаях сопротивление заземления будет снижаться

Расчет заземляющего устройства

Конструкция контура заземления, виды используемых материалов, ограничены условиями, которые содержатся в документах, к примеру, в ПУЭ, правилах устройства электроустановок.

Заземляться должны все без исключения электроустановки, как на подстанции, так и на предприятии или в быту.

https://www.youtube.com/watch?v=ytadvertiseen-GB

Наиболее распространенной конструкцией заземляющего контура является один или несколько металлических штырей (заземлителей), заглубленных в землю и соединенных между собой сварным соединением. При помощи металлического проводника контур заземления соединяется с заземляемыми устройствами.

Контур заземления

В качестве заземлителей используются неокрашенные стальные или стальные обмедненные материалы, размеры которых не должны быть меньше приведенных ниже:

  • Прокат круглый – диаметр не менее 12 мм;
  • Уголок – не менее 50х50х4 мм;
  • Трубы – диаметром не менее 25 мм с толщиной стенок не менее 4 мм.

Ничем не покрытая сталь имеет высокую коррозионную способность, особенно на границе влажного грунта и воздуха, поэтому определена минимальная толщина стенок металла (4 мм).

Оцинкованный металл хорошо сопротивляется коррозии, но не в случае протекания токов. Даже самый минимальный ток вызовет электрохимический процесс, в результате чего тонкий слой цинка прослужит минимальное время.

Современные системы заземления выполняются на основе обмедненной стали. Поскольку количество меди для изготовления невысоко, то стоимость готовых материалов ненамного превышает стальные, а срок службы многократно возрастает.

Заземлитель из уголка

Наиболее распространенными конструкциями контуров заземления являются треугольное или рядное размещение электродов. Расстояние между соседними электродами должно составлять 1.2-2 м, а глубина закладки – 2-3 м. Глубина закладки (длина электродов) во многом зависит от характеристик грунта. Чем выше его электрическое сопротивление, тем глубже должны залегать электроды.

Там, где возможно протекание токов высокого значения, к примеру, на подстанции или предприятии с мощным оборудованием, подход к выбору конструкции контура заземления и его расчет имеют очень большое значение для безопасности.

Для того чтобы обезопасить помещения, где постоянно находятся люди, было создано специальное устройство – заземлитель. Это набор проводников, которые предназначены для отвода электрической энергии от приборов к грунту, тем самым исключая поражение током человека. Он состоит из заземлителей (горизонтальных и вертикальных стержней) и заземляющих проводников.

Наш сервис предлагает вам выполнить расчет заземления с помощью удобного онлайн-калькулятора. На основании типа грунта, климатической зоны и видов заземлителей, программа предоставит результат по сопротивлению отдельных стержней, а также общему сопротивлению на растекание. Мы работаем только по последним актуальным данным, в качестве источников использовались:

  • правила устройства электроустановок;
  • нормы устройства сетей заземления;
  • заземляющие устройства электроустановок – Карякин Р. Н.;
  • справочник по проектированию электрических сетей и электрооборудования – Барыбина Ю. Г.;
  • справочник по электроснабжению промышленных предприятий – Федорова А. А. и Сербиновского Г. В.

Заключение

Поскольку самое высокое сопротивление грунта отмечается в сухое и морозное время, организацию заземлительной системы лучше всего запланировать именно на этот период. В среднем сооружение заземления занимает 1 – 3 рабочих дня.

До засыпки траншеи землей следует проверить работоспособность заземлительных устройств. Оптимальная среда для проверки должна быть как можно более сухой, в почве не должно быть много влаги. Поскольку зимы не всегда бывают бесснежными, проще всего заняться строительством системы заземления в летний период.

Итоги и выводы

Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: