Categories: Монтаж

Резистор — что это такое и для чего нужен

Сопротивление резистора в цепи.

Чтобы лучше представить себе работу резистора в цепи, обратимся к водопроводной аналогии. Поток воды между двумя произвольно выбранными сечениями трубы зависит как от разности давлений в этих сечениях, так и от характеристик самой трубы. Разность давлений создается силой тяжести или насосом. Если разность давлений постоянна, то поток будет зависеть в основном от двух параметров: от внутреннего диаметра трубы и от ее длины. Может быть так, что при большом диаметре внутренности трубы забиты ржавчиной, и она оказывает большое сопротивление потоку.

Примерно то же происходит с потоком электронов при движении между узлами кристаллической решетки. В зависимости от того, как расположены атомы внутри материала проводника, какие размеры имеет сам проводник, электроны под воздействием поля в одних случаях легче, в других с большими трудностями перемещаются от точки к точке. Количественно поток воды можно измерить в литрах за секунду, величину электрического тока (потока электронов) в проводнике измеряют в амперах. Увеличение сопротивления будет наблюдаться при увеличении длины проводника и при уменьшении его сечения. Единица измерения величины сопротивления проводников — 1 Ом.

Сопротивление в резисторе очень сильно зависит от материала, из которого изготовлены проводники. Сравним медь и сплав нихром. Если удельное сопротивление меди составляет 0,0175 Ом*мм², то сопротивление нихрома – 1,1 Ом*мм², то есть в 60 раз больше. Практически это значит, что если на концах одинаковых по геометрии проводов из меди и нихрома обеспечить разность потенциалов в 1 вольт, то ток в медном образце будет в 60 раз больше, чем в нихромовом.

Чаще всего постоянный резистор представляет собой сравнительно компактный элемент цилиндрической формы с двумя выводами. К выводам подсоединены концы намотанного или осажденного на корпус проводника.

Кроме сопротивления резистор характеризуется еще рассеиваемой мощностью. Это очень важная характеристика. Известно, что при прохождении тока через проводник выделяется тепло. Если площадь, через которую оно рассеивается, будет недостаточна, то резистор через некоторое время перегорит. Рассеивание происходит путем нагрева воздуха, либо другой среды, которая окружает резистор, и через излучение. Рассеиваемая мощность – это такая мощность, которая может выделяться на резисторе в виде тепла в течение продолжительного времени без его разрушения.

Еще одна характеристика – точность сопротивления резистора. Изготовить даже два абсолютно одинаковых резистора практически невозможно по ряду причин. Но можно изготавливать большие партии резисторов, сопротивление которых не будет выходить за заданные пределы. Поэтому постоянные резисторы характеризуются еще определенной точностью, которую указывают в процентах. Эта величина задает тот интервал значений, за которую величина сопротивления выходить не должна. Очень точные резисторы стоят очень дорого, менее точные – дешевле.

Не может быть любой и сама величина сопротивления резистора. Было бы неразумно требовать от промышленности, чтобы изготавливались и 100 Ом и 100,05 Ом. Возможные значения сопротивлений образуют так называемые ряды и обозначаются: E3, E6, E12, E24… Чем больше номер ряда, тем больше значений в нем предусмотрено для величин сопротивлений резисторов. Сравним:

— ряд E6: 1, 1.5, 2.2 Ом

— ряд E12: 1, 1.2, 1.5, 1.8, 2.2 Ом

Видим, что в ряд E12 включены промежуточные номиналы `1.2 и 1.8, которых не найти в E6. Существуют также ряды E48, E96. Самый большой выбор представлен рядом E192.

Очень просто изображаются постоянные резисторы на электрических схемах: прямоугольник с двумя выводами. Если в схеме нужно указать мощность рассеивания резистора, то используют следующие условные обозначения:

— две наклонные черточки – 0,125 Вт;

— одна наклонная черточка – 0,250 Вт;

— одна вертикальная – 1 Вт;

— две вертикальных – 2 Вт.

Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п

Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

Физическая сущность

Изучение учёными электричества привело к пониманию, что существует что-то, мешающее свободным зарядам проходить через вещество. Способность тела пропускать через себя электрический ток была названа электропроводимостью. Как выяснилось позже, она определяется количеством свободных зарядов, присутствующих в структуре элемента, характером внешнего воздействия и физическими размерами тела. Все существующие вещества были разделены на три вида:

  • проводники;
  • полупроводники;
  • диэлектрики.

К первой группе отнесли материалы, при прохождении через которые значение электрического тока практически не уменьшается. Это все металлы и электролиты. Ко второй — элементы, проводимость которых существенно изменяется при воздействии на них внешних факторов, таких как температура, свет, электромагнитное излучение. Например, кремний, германий, селен. Диэлектриками назвали вещества, практически полностью поглощающие энергию электронов, то есть преобразовывающие электрическую мощность в тепловую. Яркими представителями этой группы являются: каучук, пластмассы, композиционные материалы (текстолит, гетинакс, второпласт).

Это слово произошло от латинского resisto, что в дословном переводе на русский язык звучит как «сопротивляюсь». Правильное его определение, которое можно встретить в специализированной литературе, звучит следующим образом: «Резистор, или сопротивление, представляет собой пассивную радиодеталь в электрической цепи, характеризующуюся постоянной или изменяемой величиной проводимости. Он предназначен для преобразования силы тока в разность потенциалов или наоборот».

Принцип работы

Приобретая деталь, нужно понимать, как именно работает резистор. Любой проводниковый компонент имеет определенные особенности, обусловленные его внутренним строением. Когда электроток идет по проводнику, заряженные частицы, проходя через его структуру, теряют энергетический запас, отдавая его наружу и нагревая вещество. Известно, что величина напряжения равна произведению проходящего по проводнику тока и сопротивления материала, из которого он изготовлен. Что же делает резистор? Поскольку он содержит в себе компонент с очень высокой сопротивляемостью току, при прохождении последнего на элементе понижается напряжение, и происходит выделение некоторой части мощности в виде теплоты.

Примечания

  1. Отсюда возникает разговорное наименование резистора — сопротивление.
  2. ГОСТ Р 52002-2003
  3. В. Г. Гусев, Ю. М. Гусев Электроника — М.: Высшая школа, 1991. — С. 12. — ISBN 5-06-000681-6.
  4. Аксёнов А. И., Нефедов А. В. Элементы схем бытовой радиоаппаратуры. Конденсаторы. Резисторы. — C. 126
  5. Тищенко О. Ф., Киселёв Л. Т., Коваленко А. П. Элементы приборных устройств. Часть 1. Детали, соединения и передачи. — М., Высшая школа, 1982. — с. 260
  6. Белевцев А.Т. Монтаж радиоаппаратуры и приборов / канд. техн. наук А.М. Бонч-Бруевич. — 2-е изд. — М.: Высшая школа, 1982. — С. 55-64. — 255 с.
  7.  (недоступная ссылка). Дата обращения 11 ноября 2008.

  8. А. А. Бокуняев, Н. М, Борисов, Р. Г. Варламов и др. Справочная книга радиолюбителя-конструктора.-М. Радио и связь 1990—624 с.: ISBN 5-256-00658-4
  9. Белевцев А.Т. Монтаж радиоаппаратуры и приборов / канд. техн. наук А.М. Бонч-Бруевич. — 2-е изд.. — М.: Высшая школа, 1982. — С. 60-61. — 255 с.

Виды

Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:

  • Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.

  • SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.

Внешний вид элементов двух типов вы видите на рисунке ниже:

Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:

  • Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
  • Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.

Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:

  • манганин;
  • константан;
  • нихром;
  • никелин;
  • металлодиэлектрики;
  • оксиды металлов;
  • углерод и прочие.

SMD или чип-резисторы бывают тонкопленочными и толстопленочными, в качестве резистивного материала используют:

На рисунке ниже изображено, из чего состоит резистор:

По конструкции различают:

  • Постоянные. У них два вывода, а сопротивление вы изменять не можете – оно постоянно.
  • Переменные. Это потенциометры и подстроечные резисторы, принцип действия которых основан на перемещении скользящего контакта (бегунка) по резистивному слою.

  • Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.

А также по назначению – общего и специального. Последние подразделяются на:

  • Высокоомные (диапазон сопротивлений десятки МОм — единицы ТОм, при рабочих напряжениях до 400В).
  • Высоковольтные (рассчитаны на работу в цепях с напряжением до десятков кВ).
  • Высокочастотные (особенностью работы на высокой частоте является требование к низким собственным индуктивностям и ёмкостям. Такие изделия могут работать в цепях с частотой сигнала в сотни МГц).
  • Прецизионные и сверхпрецизионные (это изделия с высоким классом точности. У них допуск по отклонению от номинального сопротивления 0,001 — 1 %, в то время как у обычных допуск может быть и 5% и 10% и больше).

ЧÑо Ñакое ÑезиÑÑоÑ

С английÑкого ÑезиÑÑÐ¾Ñ Ð¿ÐµÑеводиÑÑÑ ÐºÐ°Ðº ÑопÑоÑивление. ЭÑо паÑÑивнÑй ÑÐ»ÐµÐ¼ÐµÐ½Ñ Ñепи, коÑоÑÑй, благодаÑÑ Ñвоим ÑвойÑÑвам, обеÑпеÑÐ¸Ð²Ð°ÐµÑ Ð½Ñжное напÑÑжение и ÑегÑлиÑÑÐµÑ Ð·Ð½Ð°Ñение Ñока.

ЧÑÐ¾Ð±Ñ Ð¿Ð¾Ð½ÑÑÑ, ÑÑо Ñакое ÑезиÑÑоÑ, ÑледÑÐµÑ Ð¾Ð±Ð»Ð°Ð´Ð°ÑÑ ÑоÑÑ Ð±Ñ ÑамÑми обÑими пÑедÑÑавлениÑми об ÑлекÑÑике. СопÑоÑивление измеÑÑеÑÑÑ Ð² ÐмаÑ. Ðно ÑвÑзано завиÑимоÑÑÑÑ Ñ Ð½Ð°Ð¿ÑÑжением и Ñилой Ñока. ÐÑоводник Ð¾Ð±Ð»Ð°Ð´Ð°ÐµÑ ÑопÑоÑивлением 1 Ðм, еÑли к конÑам его пÑиложено напÑÑжение 1 Ð, и по Ð½ÐµÐ¼Ñ Ð¿ÑоÑÐµÐºÐ°ÐµÑ Ñок Ñилой в 1 Ð. ÐоÑÑÐ¾Ð¼Ñ ÑезиÑÑÐ¾Ñ ÑвлÑеÑÑÑ ÑпÑавлением дÑÑгими паÑамеÑÑами ÑлекÑÑиÑеÑкой ÑиÑÑемÑ.

ÐоÑÑÐ¾Ð¼Ñ Ñакой ÑÐ»ÐµÐ¼ÐµÐ½Ñ ÐºÐ¾Ð½ÑÑолиÑÑÐµÑ Ð¸ огÑаниÑÐ¸Ð²Ð°ÐµÑ Ñок. Ð Ñепи ÑезиÑÑÐ¾Ñ Ð¼Ð¾Ð¶ÐµÑ Ð´ÐµÐ»Ð¸ÑÑ Ð½Ð°Ð¿ÑÑжение. ХаÑакÑеÑиÑÑиками ÑезиÑÑоÑа ÑвлÑÑÑÑÑ Ð²ÐµÐ»Ð¸Ñина номиналÑного ÑопÑоÑÐ¸Ð²Ð»ÐµÐ½Ð¸Ñ Ð¸ моÑноÑÑÑ, коÑоÑÐ°Ñ Ð¿Ð¾ÐºÐ°Ð·ÑваеÑ, какое колиÑеÑÑво ÑнеÑгии он ÑпоÑобен ÑаÑÑеÑÑÑ Ð±ÐµÐ· пеÑегÑева.

Схема подключения переменных резисторов к Ардуино

Для Подключения управляющих элементов на вход Ардуино разработаны стандартные схемы.

Подключение кнопок

Подключение кнопок хорошо представлена в схемах на рисунках.

Подключение кнопки с помощью стягивающего резистора.

Стягивающий резистор подключен между землей и логическим входом устройства.

Подключение кнопки с помощью подтягивающего резистора.

Подтягивающий резистор включен между линией питания и входом устройства.

Подключение микроконтроллера

Ардуино – это популярный микроконтроллер, в который уже загружен набор базовых АТ команд (как BIOS в компьютере). Этот набор называется прошивкой. Пользователь может самостоятельно перепрошить микроконтроллер под свои задачи. Для выполнения конкретных задач пользователь может сам написать программу на специальном языке программирования, а может использовать уже написанные другими программы. Эти программы называются библиотеки и загружаются через стандартный порт в память микроконтроллера.

Как сделать осциллограф на Ардуино для компьютера, читайте здесь.

Другие

Имея Ардуино с загруженной библиотекой Вы получаете инструмент управляющей нужной системой. Достаточно подключить нужные датчики. Датчики можно подключать цифровые и аналоговые. Цифровые уже ориентированы на работу с Ардуино. Аналоговые подключаются через аналогово-цифровые преобразователи, встроенные в микроконтроллер. Если их не хватает – приходится использовать мультиплексоры.

Спектр датчиков широк и постоянно пополняется новыми. Уже сейчас широко используются в качестве датчиков различные терморезисторы, объемные датчики, фотодатчики, резистивные датчики положения.

Наличие огромного количество уже готовых библиотек также облегчает жизнь изобретателей и просто «рукастых» людей. Возможности Ардуино ограничиваются только их фантазией.

Хотите понять, что необходимо в конкретном случае?

Как узнать, какой резистор нужен при создании схем? Первоначально следует понять, что обязательным является знание силы тока или значение сопротивления нагрузки. В рамках статьи будет рассмотрено два варианта влияния на характеристики схемы:

1) Если ничего неизвестно, то берём переменный резистор и подключаем его последовательно с нагрузкой. Вращаем регулятор до того момента, пока у нас не будет нужное напряжение. Теперь вместо переменного сопротивления подключаем постоянное с необходимыми параметрами. Измерьте ток, что идёт после резистора и перемножает полученное значение с напряжением, что подаётся. Тогда будем знать, сколько и куда подавать.

2) Необходимо знать ранее указанные величины тока и нагрузки. Для повышения точности вычисления желательно также знать и значение внутреннего сопротивления источника питания.

Давайте смоделируем немного другие условия действий. Есть один резистор в качестве нагрузки, закон Ома и необходимость рассчитать необходимое для цепи сопротивление

Это довольно интересный момент и он заслуживает, чтобы ему было уделено внимание. Почему была выбрана именно такая формулировка? Дело в том, что люди, которые только начинают заниматься созданием схем, очень часто задают такой вопрос

Но, увы, цепь рассуждений, которой они идут, является немного неверной. Рассчитать необходимое значение с одним законом Ома здесь не выйдет. Необходимо дополнительно воспользоваться формулой вычисления добавочного резистора: СДБ = СН(НИП-НН)/НН=СН(х-1). Разберём формулу:

СДБ – сопротивление добавочного резистора;

НИП – напряжение источника питания;

СН – сопротивление нагрузки;

Х = НИП/НН;

НН – напряжение, что нужно получить на нагрузке.

Воспользуемся этой формулой. Допустим, что при сопротивлении в 1 Ом СДБ будет составлять 0,6 Ом. Если мы поставим 5 Ом, то конечный результат будет 3,3 Ом. Почему всё так? Это из-за того, что чем меньший показатель имеет сопротивление нагрузки, тем большая характеристика тока в цепи. При этом будет просаживаться источник питания, ведь он тоже создаёт определённые помехи для прохождения тока. А учитывая, что с этим будет падать и напряжение, то выходит, что нужен добавочный резистор с меньшими характеристиками для получения желаемого напряжения. Это напряжение буквально «на пальцах». Может быть сложно понять, что и как, но вы попробуйте.

ЧÑо Ñакое ÑезиÑÑоÑ

ЭÑо название беÑÐµÑ Ñвое наÑало Ð¾Ñ Ð°Ð½Ð³Ð». resist, ÑÑо пеÑеводиÑÑÑ ÐºÐ°Ðº «ÑопÑоÑивлÑÑÑÑÑ». ÐоÑÑÐ¾Ð¼Ñ ÑезиÑÑÐ¾Ñ ÐµÑе назÑваÑÑ ÑопÑоÑивлением.

ЭлекÑÑиÑеÑкий Ñок, поÑÑÑпаÑÑий к ÑазлиÑнÑм пÑибоÑам, в ÑÐ¸Ð»Ñ ÑазнÑÑ Ð¿ÑиÑин иÑпÑÑÑÐ²Ð°ÐµÑ ÑдеÑживаÑÑий ÑÑÑекÑ. Ðго велиÑина завиÑÐ¸Ñ Ð¾Ñ Ñипа пÑоводника и внеÑÐ½Ð¸Ñ ÑÑловий.

ÐелиÑина Ñакого влиÑÐ½Ð¸Ñ Ð½Ð° ÑлекÑÑоÑок измеÑÑеÑÑÑ Ð² омаÑ. Чем лÑÑÑе ÑезиÑÑÐ¾Ñ ÑпоÑобен ÑаÑÑеÑÑÑ Ð¼Ð¾ÑноÑÑÑ Ð² ÑепловÑÑ ÑнеÑгиÑ, Ñем он болÑÑе. Ðго ÑабоÑа не должна меÑаÑÑ ÑоÑедним деÑалÑм ÑÑемÑ, поÑÑÐ¾Ð¼Ñ ÑÑиÑÑваеÑÑÑ ÑÐ¾Ñ Ð½Ð°Ð³Ñев, коÑоÑÑй вÑделÑеÑÑÑ Ð¿Ñи ÑменÑÑении ÑÐ¸Ð»Ñ Ñока.

РолÑ, коÑоÑÑÑ Ð¸Ð³ÑÐ°ÐµÑ Ð² Ñепи ÑÑÐ¾Ñ ÑлеменÑ, пеÑеоÑениÑÑ ÑÑÑдно. РезиÑÑÐ¾Ñ Ð¿Ð¾Ð·Ð²Ð¾Ð»ÑÐµÑ Ð¾Ð±ÐµÑпеÑиÑÑ ÑÑабилÑноÑÑÑ ÑабоÑÑ ÑиÑÑÐµÐ¼Ñ Ð¸ конÑÑолиÑÑÐµÑ Ð½Ð°Ð¿ÑÑжение.

ÐÑÑгие ÑоÑÑавлÑÑÑие ÑÑÐµÐ¼Ñ Ñакже неÑколÑко ÑаÑÑеиваÑÑ ÑÐ¸Ð»Ñ Ñока, однако Ñ Ð½ÐµÐ³Ð¾ ÑÑо Ð³Ð»Ð°Ð²Ð½Ð°Ñ Ð·Ð°Ð´Ð°Ñа. ÐÐ¾Ñ Ð¿Ð¾ÑÐµÐ¼Ñ ÑезиÑÑÐ¾Ñ — ÑÑо ÑопÑоÑивление.

ЭÑо паÑÑивнÑй ÑÐ»ÐµÐ¼ÐµÐ½Ñ ÑлекÑÑонной ÑÑемÑ. Ðо его ÑÐ¾Ð»Ñ ÑÑжело пеÑеоÑениÑÑ.

Резистор в цепи

Детали с постоянным сопротивлениям в отечественной номенклатуре обозначаются прямоугольником, внутри которого находится определенное число черт, положение которых соответствует определенному номиналу. В зарубежных схемах их символ имеет зигзагообразную форму.

Переменные варианты отличаются направляющейся к прямоугольнику сверху линией со стрелой. Она демонстрирует опцию регуляции сопротивления. Иногда выводы элемента нумеруют цифрами.

Фоторезистор иллюстрируется прямоугольной фигурой, заключенной в круг, к которой направляется пара стрел, обозначающих световые лучи. Остальные полупроводниковые изделия символизируются зачеркнутым косой чертой прямоугольником. Буква показывает, от какого параметра зависит сопротивление (t – температура, U – напряжение и так далее).

Важно! Несколько резисторных компонентов могут быть объединены в цепь параллельно или последовательно. В первом случае будет справедливым выражение: 1/R = 1/R1+ 1/R2 + … 1/Rn

Сопротивление такой композиции будет ниже, чем у элемента с самым низким номиналом. Во втором случае итоговый показатель для системы равен сумме сопротивлений всех входящих в нее элементов.

Цепи, состоящие из резисторов

Основная статья: Последовательное и параллельное соединение

Последовательное соединение резисторов

При последовательном соединении резисторов их сопротивления складываются

R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }

Доказательство

Так как общая разность потенциалов равна сумме её составляющих: U=U1+U2+U3+…{\displaystyle U=U_{1}+U_{2}+U_{3}+\ldots }

А из закона Ома падение напряжения Ui{\displaystyle U_{i}} на каждом сопротивлении Ri{\displaystyle R_{i}} равно: Ui=IiRi{\displaystyle U_{i}=I_{i}R_{i}}

при этом из закона сохранения заряда, через все резисторы идёт одинаковый ток I{\displaystyle I}, поэтому подставляя в формулу для суммы напряжений закон Ома, записываем: IR=IR1+IR2+IR3+…{\displaystyle IR=IR_{1}+IR_{2}+IR_{3}+\ldots }

Делим всё на ток I{\displaystyle I} и получаем: R=R1+R2+R3+…{\displaystyle R=R_{1}+R_{2}+R_{3}+\ldots }

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=nR1{\displaystyle R=nR_{1}}

При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.

Параллельное соединение резисторов

При параллельном соединении резисторов складываются величины, обратные сопротивлению (то есть общая проводимость 1R{\displaystyle {\frac {1}{R}}} складывается из проводимостей каждого резистора 1Ri{\displaystyle {\frac {1}{R_{i}}}})

1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.

Доказательство

Так как заряд при разветвлении тока сохраняется, то: I=I1+I2+I3+…{\displaystyle I=I_{1}+I_{2}+I_{3}+\ldots }

Из закона Ома ток Ii{\displaystyle I_{i}} через каждый резистор равен: Ii=UiRi{\displaystyle I_{i}={\frac {U_{i}}{R_{i}}}}, но разность потенциалов на всех резисторах будет одинакова, поэтому перепишем уравнение суммы токов: UR=UR1+UR2+UR3+…{\displaystyle {\frac {U}{R}}={\frac {U}{R_{1}}}+{\frac {U}{R_{2}}}+{\frac {U}{R_{3}}}+\ldots }

Делим всё на U{\displaystyle U} и получаем общую проводимость 1R=1R1+1R2+1R3+…{\displaystyle {\frac {1}{R}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }, и общее сопротивление R=11R1+1R2+1R3+…{\displaystyle R={\frac {1}{{\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+\ldots }}}

Для двух параллельно соединённых резисторов их общее сопротивление равно: R=R1R2R1+R2{\displaystyle R={\frac {R_{1}R_{2}}{R_{1}+R_{2}}}}.

Если R1=R2=R3=…=Rn{\displaystyle R_{1}=R_{2}=R_{3}=…=R_{n}}, то общее сопротивление равно: R=R1n{\displaystyle R={\frac {R_{1}}{n}}}

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Смешанное соединение резисторов

Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов R1{\displaystyle R_{1}} и R2{\displaystyle R_{2}}, общим сопротивлением R1+R2{\displaystyle R_{1}+R_{2}}, другой из резистора R3{\displaystyle R_{3}}, общая проводимость будет равна 1R=1(R1+R2)+1R3{\displaystyle {\frac {1}{R}}={\frac {1}{(R_{1}+R_{2})}}+{\frac {1}{R_{3}}}}, то есть общее сопротивление R=R3(R1+R2)R1+R2+R3{\displaystyle R={\frac {R_{3}(R_{1}+R_{2})}{R_{1}+R_{2}+R_{3}}}}.

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки, последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.

ЦвеÑÐ¾Ð²Ð°Ñ Ð¼Ð°ÑкиÑовка

ЧÑÐ¾Ð±Ñ ÑвойÑÑва, пÑиÑÑÑие ÑезиÑÑоÑÑ, можно бÑло опÑеделиÑÑ Ñо вÑÐµÑ ÑÑоÑон, ÑÑали пÑименÑÑÑ ÑвеÑовÑÑ Ð¼Ð°ÑкиÑовкÑ.

РезиÑÑоÑÑ Ñ Ð´Ð¾Ð¿ÑÑÑимÑм изменением паÑамеÑÑов в 20% обознаÑаÑÑ ÑÑÐµÐ¼Ñ Ð»Ð¸Ð½Ð¸Ñми. ÐÑли ÑÑо пÑÐ¸Ð±Ð¾Ñ ÑÑедней ÑоÑноÑÑи (5-10% погÑеÑноÑÑÑ), иÑполÑзÑÑÑ Ð²Ñего 4 маÑкеÑа. СамÑе ÑоÑнÑе ÑкземплÑÑÑ Ð¸Ð¼ÐµÑÑ Ð¾Ð±Ð¾Ð·Ð½Ð°Ñение ÑезиÑÑоÑов в виде 5-6 полоÑ.

Ðве пеÑвÑе из Ð½Ð¸Ñ ÑооÑвеÑÑÑвÑÑÑ Ð½Ð¾Ð¼Ð¸Ð½Ð°Ð»Ñ Ð´ÐµÑали. ÐÑли Ð¿Ð¾Ð»Ð¾Ñ ÑеÑÑÑе, Ñо ÑÑеÑÑÑ Ð¸Ð· Ð½Ð¸Ñ Ð³Ð¾Ð²Ð¾ÑÐ¸Ñ Ð¾ деÑÑÑиÑном множиÑеле пеÑвÑÑ Ð´Ð²ÑÑ Ð¿Ð¾Ð»Ð¾Ñ. ÐÑи ÑÑом ÑеÑвеÑÑÑй маÑÐºÐµÑ Ð³Ð¾Ð²Ð¾ÑÐ¸Ñ Ð¾ ÑоÑноÑÑи ÑезиÑÑоÑа.

ÐÑли Ð¿Ð¾Ð»Ð¾Ñ Ð²Ñего пÑÑÑ, Ñо ÑÑеÑÑÑ Ð¸Ð· Ð½Ð¸Ñ — ÑÑо ÑÑеÑий знак ÑопÑоÑивлениÑ, ÑеÑвеÑÑÐ°Ñ — ÑÑÐµÐ¿ÐµÐ½Ñ Ð¿Ð¾ÐºÐ°Ð·Ð°ÑелÑ, а пÑÑÐ°Ñ — ÑоÑноÑÑÑ. ШеÑÑÐ°Ñ Ð¿Ð¾Ð»Ð¾Ñа ÑказÑÐ²Ð°ÐµÑ Ð½Ð° ÑемпеÑаÑÑÑнÑй коÑÑÑиÑÐ¸ÐµÐ½Ñ ÑопÑоÑÐ¸Ð²Ð»ÐµÐ½Ð¸Ñ (ТÐС).

СÑиÑаÑÑ Ð¿Ð¾Ð»Ð¾ÑÑ Ñ Ñой ÑÑоÑонÑ, где они ближе наÑодÑÑÑÑ Ðº кÑаÑ. ÐÑли ÑÑо ÑеÑÑÑеÑполоÑнÑе ÑазновидноÑÑи, поÑледними вÑегда идÑÑ Ð·Ð¾Ð»Ð¾ÑÐ°Ñ Ð¸Ð»Ð¸ ÑеÑебÑÑÐ½Ð°Ñ Ð¿Ð¾Ð»Ð¾ÑÑ.

Применеие на практике

Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:

  1. Токоограничивающий резистор (current-limiting resistor)
  2. Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)
  3. Делитель напряжения (voltage divider)

Токоограничивающий резистор

Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего
резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор
снижает силу тока до нужного уровня.

В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins).
Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации,
ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю
понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.

Стягивающие и подтягивающие резисторы

Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом
со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт
(логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино.
Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему

Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения.
Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать
хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют
как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать
отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:

Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы
больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора
не даёт большей части тока идти в землю: сигнал пойдёт
к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло
бы короткое замыкание.

Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь
разомкнута:

То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери
энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.

Делитель напряжения

Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения
лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.

admin

Recent Posts

Лучшие кабельные хомуты: что выбрать для надежной фиксации

При организации электропроводки и крепления кабелей все чаще применяются специальные средства, которые позволяют улучшить качество и…

3 недели ago

В чём преимущества стальных сгонов и как они применяются

В чём преимущества стальных сгонов и как они применяются Стальные сгоны — это один из…

3 недели ago

Самые востребованные железобетонные изделия: подборка для строителей

Железобетонные изделия — это основа, на которой держатся современные здания и мосты, жилые кварталы и…

3 недели ago

Модульные офисы продаж: быстрый старт для вашего бизнеса

Модульные офисы продаж — это находка для компаний, которые ценят скорость и удобство. Компактные, мобильные…

3 недели ago

Погрузочные рампы для бизнеса: особенности выбора и покупки

Погрузочные рампы играют ключевую роль в бизнесе, связанном с логистикой, складами и транспортировкой товаров. Это…

3 недели ago

Модульные здания: универсальное решение для бизнеса и жил

Модульные здания с каждым годом привлекают все больше внимания благодаря своим преимуществам. Одним из главных…

3 недели ago

This website uses cookies.