- Двухполюсник и его эквивалентная схема
- ÐдиниÑÑ Ð¸Ð·Ð¼ÐµÑÐµÐ½Ð¸Ñ Ð¼Ð¾ÑноÑÑи
- Принцип действия
- 21.Принцип работы центробежного насоса.
- Что такое КПД ИТ
- Вопросы и задания для самоконтроля
- 1.11. Работа и мощность тока
- ФоÑмÑÐ»Ñ Ð¼Ð¾ÑноÑÑи Ñока
- Виды электродвигателей
- Общие характеристики двигателей
- МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ
- Реактивный коэффициент
- Вращательный момент
- Как найти активную, реактивную и полную мощность
- От чего зависит мощность тока
- Виды мощности постоянного тока
- Мгновенная мощность
- Активная мощность
- Реактивная мощность
- Полная мощность
- Формула работы в физике
- Формула для общего случая
- Разрядная емкость источника
- Отношение — полезная мощность
Двухполюсник и его эквивалентная схема
Двухполюсник представляет собой электрическую цепь, содержащую две точки присоединения к другим цепям. Бывает два вида электрических цепей:
- цепи, содержащие источник тока или напряжения;
- двухполюсники, не являющиеся источниками.
Первые характеризуются электрическими параметрами: силой тока, напряжением и импедансом. Для расчёта параметров таких двухполюсников предварительно производят замену реальных элементов цепи на идеальные элементы. Комбинация, которая получается в результате подобной замены, называется эквивалентной схемой.
Внимание! При работе со сложными электрическими схемами с учётом того, что устройство работает на одной частоте, допустимо преобразовывать последовательные и параллельные ветви до получения простой схемы, доступной для расчёта параметров. Второй вид двухполюсников можно охарактеризовать только величиной внутреннего сопротивления
Второй вид двухполюсников можно охарактеризовать только величиной внутреннего сопротивления.
ÐдиниÑÑ Ð¸Ð·Ð¼ÐµÑÐµÐ½Ð¸Ñ Ð¼Ð¾ÑноÑÑи
1 ÐÑ (ваÑÑ) — моÑноÑÑÑ Ñока в 1 Ð (ампеÑ) в пÑоводнике, Ð¼ÐµÐ¶Ð´Ñ ÐºÐ¾Ð½Ñами коÑоÑого поддеÑживаеÑÑÑ Ð½Ð°Ð¿ÑÑжение 1 Ð (волÑÑ).
ÐÑÐ¸Ð±Ð¾Ñ Ð´Ð»Ñ Ð¸Ð·Ð¼ÐµÑÐµÐ½Ð¸Ñ Ð¼Ð¾ÑноÑÑи ÑлекÑÑиÑеÑкого Ñока назÑваеÑÑÑ Ð²Ð°ÑÑмеÑÑ. Также ÑоÑмÑла моÑноÑÑи Ñока позволÑÐµÑ Ð¾Ð¿ÑеделÑÑÑ Ð¼Ð¾ÑноÑÑÑ Ñ Ð¿Ð¾Ð¼Ð¾ÑÑÑ Ð²Ð¾Ð»ÑÑмеÑÑа и ампеÑмеÑÑа.
ÐнеÑиÑÑÐµÐ¼Ð½Ð°Ñ ÐµÐ´Ð¸Ð½Ð¸Ñа моÑноÑÑи — кÐÑ (киловаÑÑ), ÐÐÑ (гигаваÑÑ), мÐÑ (милливаÑÑ) и дÑ. С ÑÑим ÑвÑÐ·Ð°Ð½Ñ Ð¸ некоÑоÑÑе внеÑиÑÑемнÑе единиÑÑ Ð¸Ð·Ð¼ÐµÑÐµÐ½Ð¸Ñ ÑабоÑÑ, коÑоÑÑе ÑаÑÑо иÑполÑзÑÑÑ Ð² бÑÑÑ, напÑÐ¸Ð¼ÐµÑ (киловаÑÑ·ÑаÑ). ÐоÑколÑÐºÑ 1кÐÑ = 103ÐÑ, а 1Ñ = 3600Ñ, Ñо
1кÐÑÂ·Ñ = 103ÐÑ·3600Ñ = 3,6·106ÐÑÂ·Ñ = 3,6·106Ðж.
Принцип действия
По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.
Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.
Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:
nпр = nобр = f1 × 60 ÷ p = n1
где:
nпр — количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;
nобр — число оборотов поля в обратном направлении, об/мин;
f1 — частота пульсации электрического тока, Гц;
p — количество полюсов;
n1 — общее число оборотов в минуту.
Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.
Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют
S = P ÷ cos (alpha), где:
S — полная мощность, измеряемая в Вольт-Амперах.
P — активная мощность, указываемая в Ваттах.
alpha — сдвиг фаз.
Под полной мощностью понимаются реальный показатель, а под активной — расчетный.
21.Принцип работы центробежного насоса.
Устройство:
Основной
рабочий орган ц-б насоса – свободно
вращающееся внутри спиралевидного
корпуса колесо, насаженное на вал. Между
дисками колеса – лопасти, плавно
изогнутые в сторону, противоположную
направлению вращения колеса. Внутренние
поверхности дисков и поверхности лопаток
образуют т.н. межлопастные каналы колеса,
при работе заполненные перекачиваемой
жидкостью. Всасывание и нагнетание
жидкости происходит равномерно и
непрерывно под действием центробежной
силы, возникающей при вращении колеса.
Принцип
работы:
При
переходе жидкости из канала рабочего
колеса в корпус происходит резкое
снижение скорости, в результате чего
кинетическая энергия жидкости превращается
в потенциальную энергию давления,
которое необходимо для подачи жидкости
на заданную высоту. При этом в центре
колеса создается разрежение, и вследствие
этого жидкость непрерывно поступает
по всасывающему трубопроводу в корпус
насоса, а затем в межлопастные каналы
рабочего колеса. Если перед пуском ц-б
насоса всасывающий трубопровод и корпус
не залиты жидкостью, то возникающего
разрежения будет недостаточно для
подъема жидкости в насос (из-за зазоров
между колесом и корпусом). Чтобы жидкость
не выливалась из насоса, на всасывающем
трубопроводе устанавливают обратный
клапан. Для отвода жидкости в корпусе
насоса есть расширяющаяся спиралевидная
камера: жидкость сначала поступает в
эту камеру, а затем в нагнетательный
трубопровод.
Что такое КПД ИТ
Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.
В виде формул это выглядит так:
- А полезн. = q*U = I*U*t = I2*R*t;
- А полн. = q*ε = I* ε*t = I2*(R+r)*t.
где:
- q – количество энергии, Дж;
- U – напряжение, В;
- ε – ЭДС, В;
- I – ток, А;
- R – сопротивление нагрузки, Ом;
- r – импеданс источника, Ом;
- t – время, за которое совершается работа, с.
С учётом этого можно выразить мощности двухполюсника:
- Р полезн. = А полезн./t = I*U = I2*R;
- P полн. = А полн./t = I*ε = I2*(R+r).
Формула кпд источников тока имеет вид:
η = Р полезн./P полн.= U/ε = R/ R+r.
Вопросы и задания для самоконтроля
- Запишите закон Джоуля-Ленца в интегральной и дифференциальной формах.
- Что такое ток короткого замыкания?
- Что такое полная мощность?
- Как вычисляется к.п.д. источника тока?
- Докажите, что наибольшая полезная мощность выделяется при равенстве внешнего и внутреннего сопротивлений цепи.
- Верно ли утверждение, что мощность, выделяемая во внутренней части цепи, постоянна для данного источника?
- К зажимам батарейки карманного фонаря присоединили вольтметр, который показал 3,5 В.
- Затем вольтметр отсоединили и на его место подключили лампу, на цоколе которой было написано: Р=30 Вт, U=3,5 В. Лампа не горела.
- Объясните явление.
- При поочерёдном замыкании аккумулятора на сопротивления R1 и R2 в них за одно и то же время выделилось равное количество тепла. Определите внутреннее сопротивление аккумулятора.
1.11. Работа и мощность тока
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу
U12работой электрического тока
Если обе части формулы
RIt
Это соотношение выражает закон сохранения энергии для однородного участка цепи.
Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца.
Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).
Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. записывается в виде
Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:
Первый член в левой части ΔQ = R I2Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = r I2Δt – тепло, выделяющееся внутри источника за то же время.
Выражение IΔt равно работе сторонних сил ΔAст, действующих внутри источника.
При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).
Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника
Роль электрического поля сводится к перераспределению тепла между различными участками цепи.
Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, но и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение.
Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна
коэффициентом полезного действия источника
На рис. 1.11.1 графически представлены зависимости мощности источника Pист, полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной , и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при ) до (при R = 0).
Рисунок 1.11.1.Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока |
Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax, равная
Rr
I → 0R → ∞P
ФоÑмÑÐ»Ñ Ð¼Ð¾ÑноÑÑи Ñока
Ðод моÑноÑÑÑÑ Ñока Ñак же, как и в меÑанике, понимаÑÑ ÑабоÑÑ, коÑоÑÐ°Ñ Ð²ÑполнÑеÑÑÑ Ð·Ð° единиÑÑ Ð²Ñемени. РаÑÑÑиÑаÑÑ Ð¼Ð¾ÑноÑÑÑ, Ð·Ð½Ð°Ñ ÑабоÑÑ, коÑоÑÑÑ Ð²ÑполнÑÐµÑ ÑлекÑÑиÑеÑкий Ñок за некоÑоÑÑй пÑомежÑÑок вÑемени, Ð¿Ð¾Ð¼Ð¾Ð¶ÐµÑ ÑизиÑеÑÐºÐ°Ñ ÑоÑмÑла.
Ток, напÑÑжение, моÑноÑÑÑ Ð² ÑлекÑÑоÑÑаÑике ÑвÑÐ·Ð°Ð½Ñ ÑавенÑÑвом, коÑоÑое можно вÑвеÑÑи из ÑоÑмÑÐ»Ñ A = UIt. Ðо ней опÑеделÑÑÑ ÑабоÑÑ, коÑоÑÑÑ Ð²ÑполнÑÐµÑ ÑлекÑÑиÑеÑкий Ñок:
P = A/t = UIt/t = UI Таким обÑазом, ÑоÑмÑла моÑноÑÑи поÑÑоÑнного Ñока на лÑбом ÑÑаÑÑке Ñепи вÑÑажаеÑÑÑ ÐºÐ°Ðº пÑоизведение ÑÐ¸Ð»Ñ Ñока на напÑÑжение Ð¼ÐµÐ¶Ð´Ñ ÐºÐ¾Ð½Ñами ÑÑаÑÑка.
Виды электродвигателей
По источнику питания приводы разделяют на работающие от:
- Постоянного тока.
- Переменного тока.
По принципу работы их, в свою очередь, делят на:
- Коллекторные.
- Вентильные.
- Асинхронные.
- Синхронные.
Вентильные двигатели не относят к отдельному классу, так как их устройство является вариацией коллекторного привода. В их конструкцию входит электронный преобразователь и датчик положения ротора. Обычно их интегрируют вместе с платой управления. За их счет происходит согласованная коммутация якоря.
Синхронные и асинхронные двигатели работают исключительно от переменного тока. Управление оборотами происходит с помощью сложной электроники. Асинхронные делятся на:
- Трехфазные.
- Двухфазные.
- Однофазные.
Теоретическая формула мощности трехфазного электродвигателя при соединении в звезду или треугольником
P = 3 * Uф * Iф * cos(alpha).
Однако для линейных значений напряжения и тока она выглядит как
P = 1,73 × Uф × Iф × cos(alpha).
Это будет реальный показатель, сколько мощности двигатель забирает из сети.
Синхронные подразделяются на:
- Шаговые.
- Гибридные.
- Индукторные.
- Гистерезисные.
- Реактивные.
В своей конструкции шаговые двигатели имеют постоянные магниты, поэтому их не относят к отдельной категории. Управление работой механизмов производится с помощью частотных преобразователей. Существуют также универсальные двигатели, которые функционируют от постоянного и переменного тока.
Общие характеристики двигателей
Все моторы имеют общие параметры, которые используются в формуле определения мощности электродвигателя. На их основе можно рассчитать свойства машины. В разной литературе они могут называться по-разному, но означают они одно и то же. В список таких параметров входит:
- Крутящий момент.
- Мощность двигателя.
- Коэффициент полезного действия.
- Номинальное количество оборотов.
- Момент инерции ротора.
- Расчетное напряжение.
- Электрическая константа времени.
Вышеуказанные параметры необходимы, прежде всего, для определения эффективности электрических установок, работающих за счет механической силы двигателей. Расчетные величины дают лишь приблизительное представление о реальных характеристиках изделия. Однако эти показатели часто используют в формуле мощность электродвигателя. Именно она определяет результативность машин.
МОЩНОСТЬ, ВЫДЕЛЯЕМАЯ ВО ВНЕШНЕЙ ЦЕПИ
. (2)
Из формулы (2) видно, что при коротком замыкании цепи (R0) и при Rэта мощность равна нулю. При всех других конечных значениях R мощность Р1> 0. Следовательно, функция Р1 имеет максимум. Значение R, соответствующее максимальной мощности, можно получить, дифференцируя Р1 по R и приравнивая первую производную к нулю:
. (3)
Из формулы (3), с учётом того, что R и r всегда положительны, а Е ? 0, после несложных алгебраических преобразований получим:
R= r. (4)
Следовательно, мощность, выделяемая во внешней цепи, достигает наибольшего значения при сопротивлении внешней цепи равном внутреннему сопротивлению источника тока.
При этом сила тока в цепи (5)
равна половине тока короткого замыкания. При этом мощность, выделяемая во внешней цепи, достигает своего максимального значения, равного
. (6)
Когда источник замкнут на внешнее сопротивление, то ток протекает и внутри источника и при этом на внутреннем сопротивлении источника выделяется некоторое количество тепла. Мощность, затрачиваемая на выделение этого тепла равна
. (7)
Следовательно, полная мощность, выделяемая во всей цепи , определится формулой
= I2(R+r) = IE (8)
Реактивный коэффициент
По-другому он называется коэффициентом мощности и является безразмерной величиной, вводимой для вычисления реактивной составляющей. Говоря научным языком, он показывает, насколько сдвигается фаза переменного тока, протекающего через нагрузку, от возникшего на ней напряжения. Численно он принимается равным косинусу сдвига. Математически это сдвиг интерпретируется как косинус угла между векторными значениями тока и напряжения.
Простыми же словами, коэффициент мощности, обозначаемый φ, указывает на ту часть расходуемой электроэнергии, которая преобразуется в полезную работу. Например, при cos φ = 0,9 девяносто процентов от полной энергии уйдёт на совершение полезного действия, а остальные десять будут считаться потерями. Поэтому если в паспорте на какой-либо прибор указано, что мощность изделия составляет 500 Вт, а cos φ = 0,5, то полный расход его энергии будет составлять 500/0,5 = 250 ВА.
То есть коэффициент φ находится из отношения потребляемой устройством энергии к значению полной мощности. Нередко в паспорте оборудования указывается и составляющая φ (характер нагрузки). Она может быть резистивно-ёмкостной или резистивно-индуктивной. При этом сам коэффициент соответственно является опережающим или отстающим.
Если же напряжение в цепи изменяется по синусоидальному закону, а ток по несинусоидальному, то нагрузка никакой реактивной составляющей иметь не будет, а коэффициент принимается равным главной волне (первой гармонике). Под несинусоидальными понимаются искажения электрического сигнала, связанные с гармониками, преобладающими над основной частотой.
В математике формулой для нахождения коэффициента мощности является выражение: cos φ= P/S. Поэтому чем больше его значение, тем меньше потребляет устройство энергию из сети. Существуют различные способы поднятия значения cos φ, даже до максимального значения, равного единице, называемые коррекцией. Наиболее эффективным является добавление в схему сложного электронного узла, размещаемого на входе устройства.
Вращательный момент
Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.
В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание «крутящий момент». Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором — внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.
Рассчитывается он как
M = F × r, где:
M — крутящий момент, Нм;
F — прикладываемая сила, H;
r — радиус, м.
Для расчета номинального вращающего момента привода используют формулу
Мном = 30Рном ÷ pi × нном, где:
Рном — номинальная мощность электрического двигателя, Вт;
нном — номинальное число оборотов, мин-1.
Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:
Рном = Мном * pi*нном / 30.
Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.
Как найти активную, реактивную и полную мощность
Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.
В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.
При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.
Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в ваттах, реактивная мощность измеряется в вар – вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.
Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).
Что такое активная и реактивная электроэнергия, мощность
Как найти реактивную мощность
Активное и реактивное сопротивление
Компенсация реактивной мощности в электрических сетях
Активное и индуктивное сопротивление кабелей – таблица
Онлайн калькулятор расчета тока по мощности
От чего зависит мощность тока
Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.
Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.
Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.
Формула электрической мощности
В чем измеряется мощность электрического тока
Как найти мощность
Активная реактивная и полная мощность
Расчет тока по мощности и напряжению
Мощность (P) Время (T) Энергия (W)
Виды мощности постоянного тока
Любая мощностная величина определяется работой, которая совершается за определенную единицу времени. Чаще всего ею становится секунда. Она означает величину, характеризующую, насколько быстро совершается работа. Касаемо электрической мощности это расход электроэнергии за одну секунду.
Мощностная характеристика тока соответствует отношению его работы ко времени
Работой тока называется процесс превращения электроэнергии в какую-либо другую энергию (механическую, тепловую или световую). Именно по мощности, которая обозначается буквой «P» или «W», и оценивается работоспособность электротока.
К сведению! Вообще у тока постоянного значения нет активной и реактивной P. Для этого вида сети характерна только мгновенная характеристика.
Мгновенная мощность
Если говорить о сетях переменного электротока, то рассматриваемая величина в них, как и электроток или напряжение, регулярно меняет свои значения. Это напрямую влияет на другие параметры. При константном течении зарядов все остается неизменным. Именно поэтому и возникает термин «мгновенная мощность».
Силы в сети регулярного тока остаются неизменными и равняются мгновенным их значениям, взятым в произвольный момент времени. Такую характеристику можно высчитать по мгновенным значениям. Для этого подходит формула мощности постоянного тока в цепи: P = I * U.
Рассматриваемая величина может быть найдена из произведения силы электротока и напряжения
Если сеть пассивна и в ней соблюдается закон Ома, то справедливо равенство. В случае подключения источника ЭДС нужна другая формула: P = I * E, где E — это электродвижущая сила.
Активная мощность
Активная мощность — это среднее за период значение мгновенной P. При активной P происходит конвертация мощности тока в энергию любого вида (механическую, световую или тепловую). Подобный перевод электротока нельзя выполнить в обратном направлении. Активный тип также измеряется в ваттах. 1 Ватт равен 1 вольту умноженному на 1 ампер.
Работа неразрывно связана с определением мощностных характеристик
К сведению! В бытовых и уж тем более промышленных масштабах единицу измерения ватт никогда не используют. Для этих целей задействуют показатели на порядок выше: мегаватты в киловатты.
Реактивная мощность
Реактивная мощностная характеристика определяет нагрузку, которая создается электрическими устройствами определенными колебаниями энергии электромагнитного поля в сетях синусоидального тока переменной частоты. Она равна произведению среднеквадратичных значений напряжения и силы тока, умноженных на синус угла, на который сдвигается фаза между ними. Реактивный параметр неразрывно связан с полной P и активным параметром.
Все основные величины могут быть найдены с использованием закона Ома
Если говорить про физический смыл реактивности, то он представляет собой некую энергию, которая перекачивается из источника к реактивным элементам приемника (конденсатор, обмотка генератора, катушка индуктивности и т. д.), а потом возвращается обратно в источник за время одного периода колебаний.
Полная мощность
Полная P электротока представляет собой значение, соответствующее произведению силы электротока и напряжения в цепи. Она неразрывно связана с активной и реактивной величинами и определяется следующим уравнением: , где Sos = полная мощность, а P и Q — ее активная и реактивная характеристики соответственно.
Общая мощность, которую можно представить в виде кружки пива
Если говорить проще, то активная P есть везде, где присутствует нагрузка активного плана. Например, в спиральных нагревателях, сопротивлении проводов и т. д. Реактивный параметр характерен для реактивной нагрузки, которая имеется в элементах индуктивности или емкости.
Формула работы в физике
Для механической работы формула несложна: A = F x S. Если расшифровать, она равна приложенной силе на путь, на протяжении которого эта сила действовала. Например, мы поднимаем груз массой 15 кг на высоту 2 метра. Механическая работа по преодолению силы тяжести будет равна F x S = m x g x S. То есть, 15 x 9,8 x 2 = 294 Дж. Если речь идет о количестве теплоты, то A в этом случае равняется изменению количества теплоты. Например, на плите нагрели воду. Ее внутренняя энергия изменилась, она увеличилась на величину, равную произведению массы воды на удельную теплоемкость на количество градусов, на которое она нагрелась.
Формула для общего случая
Так как напряжение — это работа, то, умножив её на количество перенесённых зарядов, получится энергия, затраченная для перемещения частиц от одного края проводника к другому. Энергия, в общем понимании, это работа за единицу времени. Поэтому можно записать следующее выражение Pab = A/dt, где:
- dt — интервал времени, за который все свободные заряды были перенесены;
- A — непосредственно сама работа.
Исходя из определения, данного силе тока, она практически является зарядом. В случае изменения во времени ток можно описать выражением I = q/dt. Тогда, исходя из этой формулы, верным будет утверждение, что q = I*dt. Если подставить полученную формулу вместо q в выражение, описывающее мощность, получится Pab = U* (I*dt/dt) = U*I.
Если время изменения бесконечно мало, то можно принять, что напряжение и ток практически не изменяются. В результате мгновенная электрическая мощность будет равна P (t) = u (t)*i (t). Как видно из формулы, значение мощности для любой точки времени будет прямо пропорционально мгновенным значениям тока и разности потенциалов. При этом если цепь неидеальная, то она содержит определённое сопротивление. Используя закон Ома для участка цепи, формулу для нахождения мгновенной мощности можно переписать в виде P (t) = i (t)2*R = u (t)2/R.
Мощность одновременно связана сразу с несколькими величинами и соответствует полной работе, затрачиваемой на перемещение некоторого количества кулонов за единицу времени (одну секунду). Из определения следует, что одно и то же значение мощности можно получить разными способами, например, уменьшая силу тока, но увеличивая напряжение. Такой подход и используется при передаче энергии на большие расстояния. Для этого применяются трансформаторы, понижающие и повышающие ток.
Разрядная емкость источника
Величина, зависящая от силы тока разряда, называется разрядной ёмкостью источника. Это электрический заряд, который отдаёт источник в процессе эксплуатации в зависимости от тока нагрузки. Эту величину можно считать постоянной условно. Так, стартерный аккумулятор, имеющий разрядную ёмкость С = 55 А*ч, при токе разряда 5,5 А проработает 10 часов. При запусках холодного или имеющего неисправность автомобиля аккумулятор можно разрядить за несколько минут.
Для того чтобы найти остаточную разрядную ёмкость, производят циклы «заряд – разряд». Они выполняются при помощи нагрузочных сопротивлений. Разряд на нагрузочное сопротивление производят до минимально допустимых значений плотности электролита. При этом замеряется время работы под нагрузкой. Это актуально при сезонном обслуживании аккумуляторов для выявления процессов саморазряда.
Разрядная ёмкость автомобильного аккумулятора
Внутреннее сопротивление источников тока – важная величина. Методы, применяемые для её снижения, являются прямыми путями увеличения отдаваемой мощности источника, значит, повышения производительности двухполюсников. Правильное измерение и вычисление импеданса эквивалентных схем позволяют приблизить двухполюсник к идеальному источнику.
Отношение — полезная мощность
Мощность, потребляемая двигателем из сети, всегда больше полезной мощности двигателя и зависит от типа двигателя. Отношение полезной мощности двигателя к мощности, потребляемой из сети, называется коэффициентом полезного действия двигателя. Мощность, получаемая в результате вычитания полезной мощности двигателя от мощности, потребляемой из сети, превращается в тепло и приводит к нагреванию двигателя.
Основной характеристикой, определяющей достоинства двигателя, является его коэффициент полезного действия. Он равен отношению полезной мощности, развиваемой двигателем к полным энергетическим затратам. Если реактивный двигатель развивает силу тяги F и летит со скоростью и, то, очевидно, полезная мощность, развиваемая им, равна Fv. С другой стороны, полная затраченная энергия равна q GH, где G — расход горючего в единицу времени, а Н — теплотворная способность горючего.
Источник тока ( генератор) всегда должен создавать полную мощность, но только некоторая ее часть является полезной, а другая часть неизбежно теряется на внутреннем сопротивлении генератора. Он равен отношению полезной мощности к полной. Иначе говоря, кпд показывает, какую долю полной мощности составляет полезная мощность.
Коэффициент полезного действия ( КПД) учитывает все виды потерь, связанных с преобразованием механической энергии двигателя в энергию движущей жидкости. Определяется КПД отношением полезной мощности к мощности, потребляемой насосом.
Естественным способом улучшения cos cp является полная загрузка асинхронных двигателей. КПД определяется отношением полезной мощности ЛГ2 к подводимой NI. У большинства двигателей КПД достигает максимума ( 65 — 95 %) при нагрузке, равной 75 % номинальной. Благодаря этому обеспечивается экономичность двигателей при преобладающих на практике режимах нагружения.
Гидравлический КПД представляет собой отношение полезной мощности насоса к сумме полезной мощности и мощности, затраченной на преодоление гидравлических сопротивлений в насосе. Объемным КПД называют отношение полезной мощности насоса к сумме полезной мощности и мощности, потерянной с утечками. Механический КПД насоса есть величина, выражающая относительную долю механических потерь в насосе.
Под коэффициентом полезного действия приемной антенны понимается обычно отношение полезной мощности, выделенной на нагрузке ( на сопротивлении приемника), к полной мощности, принятой антенной из поля.
Такой подход к разделению потерь не изменяет общей картины процессов, происходящих в герметической машине, так как полный коэффициент полезного действия равен отношению полезной мощности, затрачиваемой на выполнение транспортировки жидкости или газа, к мощности, потребляемой электродвигателем из сети. Однако следует помнить, что потери на трение выделяются в виде тепла в небольшом пространстве между статором и ротором, и если не будет обеспечена надлежащая циркуляция жидкости, то очень скоро наступит сильный нагрев ее и, следовательно электродвигателя.
Различают мощность, потребляемую насосом, и полезную мощность насоса. Полезной называют мощность, сообщаемую насосом подаваемой жидкой среде. Отношение полезной мощности к потребляемой мощности насоса является КПД насоса.
Режим усиления класса В в двухтактной ступени. |
А когда на сетке нет переменного напряжения, то нет полезной мощности, и вся подводимая мощность расходуется на нагрев анода. Теоретически кпд ступени в режиме класса А не выше 40 — 45 %, а практически он ниже. Таким образом, режим класса А невыгоден в отношении полезной мощности и характеризуется низким кпд. Второй режим, называемый усилением класса В, состоит в том, что рабочая точка устанавливается в начале нижнего изгиба характеристики. Импульсы анодного тока получаются только от положительных полуволн переменного напряжения сетки. График усиления в режиме класса В для одной лампы показан на рис. 9.35 а. Колебания анодного тока сильно искажены по сравнению с колебаниями на сетке.