Мы знаем, что причиной электрического сопротивления проводника является взаимодействие электронов с ионами кристаллической решётки металла (§ 43). Поэтому можно предположить, что сопротивление проводника зависит от его длины и площади поперечного сечения, а также от вещества, из которого он изготовлен.
На рисунке 74 изображена установка для проведения такого опыта. В цепь источника тока по очереди включают различные проводники, например:
Силу тока в цепи измеряют амперметром, напряжение — вольтметром.
Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.
Рис. 74. Зависимость сопротивления проводника от его размеров и рода вещества
Выполнив указанные опыты, мы установим, что:
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.
Как учесть зависимость сопротивления от вещества, из которого изготовляют проводник? Для этого вычисляют так называемое удельное сопротивление вещества.
Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной 1 м, площадью поперечного сечения 1 м2.
Введём буквенные обозначения: ρ — удельное сопротивление проводника, I — длина проводника, S — площадь его поперечного сечения. Тогда сопротивление проводника R выразится формулой
Из неё получим, что:
Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является 1 Ом, единицей площади поперечного сечения — 1 м2, а единицей длины — 1 м, то единицей удельного сопротивления будет:
Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметpax, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:
В таблице 8 приведены значения удельных сопротивлений некоторых веществ при 20 °С. Удельное сопротивление с изменением температуры меняется. Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.
Таблица 8. Удельное электрическое сопротивление некоторых веществ (при t = 20 °С)
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.
При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях бывают нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы 8, сплав нихром имеет удельное сопротивление почти в 40 раз большее, чем алюминий.
Фарфор и эбонит имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток, их используют в качестве изоляторов.
Акушерство
Антиноцицептивное действие
Бруцеллез
Гурты
Денежная оценка земель
Земельный кадастр
КЛЕЩЕЙ
Киста
Нарисна геометрія
Пастереллез
Половой цикл
Реалізація зерна
Сальмонеллез
Случка
Туберкулез
Туберкулин
Устройство территории
аборт
актиномикоз
блохи
бонитировка почв
виробництво зерна
гінекологія
документ
дрожжи
ефективності виробництва
жеребец
животноводство
заплідненость
землепользование
клещ
косячная случка
мтп
оценка земель
паратиф
почва
противоэрозионных
ринок зерна
самосогревания
спермії
столовые вина
сухие вина
тесты по химии
шейка матки
эндометрит
На основании опытов было установлено, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально его поперечному сечению
Где р — коэффициент пропорциональности, или Удельное сопротивление проводника, I — длина проводника, S — поперечное сечение проводника.
Удельным сопротивлением Является сопротивление проводника из данного вещества единичной длины и единичного поперечного сечения. Удельное сопротивление проводника зависит от материала проводника.
В СИ единица измерения удельного сопротивления
Сопротивление проводников зависит от температуры. Величина, характеризующая зависимость изменения сопротивления проводника от температуры, называется Температурным коэффициентом сопротивления И обозначается А. Температурный коэффициент сопротивления показывает, на какую часть первоначального сопротивления изменяется сопротивление этого проводника при нагревании от 0° С до Г С, то есть
Из этой формулы можно получить единицы измерения температурного коэффициента сопротивления
Проделав соответствующие преобразования, получим
Сопротивление всех металлов при нагревании возрастает, их температурные коэффициенты сопротивления положительны. Сопротивление растворов солей, кислот, щелочей, а также угля при нагревании уменьшается, их температурные коэффициенты отрицательны, для них формулу зависимости сопротивления от температуры можно записать так:
В формуле (1), заменив
Получим общую формулу сопротивления
Где р0 — удельное сопротивление проводника при 0° С. Если в формуле (2) заменить
То получим
Где Pt — удельное сопротивление проводника при температуре t° С.
С приближением температуры чистых металлов к абсолютному нулю их сопротивление резким скачком падает до нуля (рис. 77).
Ток, идущий по замкнутому проводнику, при температурах, близких к абсолютному нулю, может циркулировать в нем достаточно долгое время. Такое явление называется Сверхпроводимостью.
Электрический ток по классическому определению – это направленное движение заряженных частиц. В металлах перемещаются электроны, если создать между двумя точками подключения источника питания разницу потенциалов. Этому процессу препятствуют примеси, поэтому проводимость лучше в однородном материале.
К сведению. Качественные проводники тока выпускают из электротехнической меди, которая содержит не более 0,01% сторонних примесей. Незначительная добавка алюминия (0,02-0,03%) уменьшает проводимость на 10-11%. При большой длине трассы существенно увеличиваются потери на передачу энергии.
Отрицательное влияние оказывают колебательные процессы атомов кристаллической решетки. При повышении температуры увеличивается амплитуда этих движений, что создает дополнительные препятствия перемещению зарядов. Для компенсации этого явления резисторы создают из специальных сплавов. Правильно подобранные пропорции материалов обеспечивают стабильность электрического сопротивления в расчетном температурном диапазоне.
Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину
Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз
Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.
Есть другая, более сложная для понимания формула для неоднородного анизотропного материала. Зависит от тензорного координата.
Важно отметить, что связь сопротивления с проводимостью также выражается формулами. Существуют правила для нахождения изотропных и анизотропных материалов через тензорные компоненты
Они показаны ниже в схеме.
Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:
При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:
S = (2*I*L)/((1/p)*ΔU.
В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).
С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.
К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.
При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:
ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,
где:
Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.
Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.
Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.
К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.
По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).
Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.
Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.
Чтобы рассчитать потери, которые обеспечивает определенная длина проводника, удобно оперировать удельными параметрами. Базовая формула для вычисления электрического сопротивления:
R = p*(L/S),
где:
При необходимости сечение можно вычислить по диаметру (D), применив известную формулу из геометрии:
S = (π * D2)/4.
Если микрометр отсутствует, применяют намотку провода на цилиндрический инструмент (отвертку, карандаш). Далее измеряют длину созданной катушки обычной линейкой, делят полученное значение на количество витков.
Для значительного изменения сопротивления провода достаточно минимального количества примесей. Однако даже при высокой степени очистки медь гораздо лучше проводит электрический ток, по сравнению с алюминием. Ниже приведены значения удельного сопротивления соответствующих материалов. С применением справочных сведений несложно проверить потери при выборе кабельной продукции для формирования трассы определенной длины:
Удельное сопротивление нихрома составляет от 1,04 до 1,42 (Ом*мм кв.)/метр. Большой разброс параметров объясняется пропорциональным изменением составляющих сплава. Такие материалы применяют для создания нагревательных элементов, так как целостность изделий сохраняется при высокой температуре. С учетом высокого сопротивления нихромовой проволоки на единицу длины этот кабель идеально подходит для создания «теплого пола».
Особенности других материалов (удельное сопротивление Ом*мм кв.)/м):
Из раздела с описанием удельных параметров понятно, что электрическое сопротивление проводника зависит от длины. Если взять образец из серебра (площадь нормированного сечения 1 кв. мм) при длине 6,8 м, несложно вычислить значение R = 6,8 * 0,016 = 0,1088 Ом.
Аналогичным образом решают иные практические задачи. Чтобы создать провод с электросопротивлением 100 Ом понадобится серебряная жила длиной 6 250 м = 100/ 0,016. Если применить металлический проводник из железа, длина составит 833 м = 100/0,12.
Следующий решающий фактор – площадь поперечного сечения. Для наглядности можно использовать пример с перекачиванием жидкости из основного бака в две разные емкости. Создать необходимый напор несложно поднятием главного резервуара на небольшую высоту. Применив трубки с разным диаметром протоков, можно увидеть разницу в скорости заполнения контрольных объемов. Если показания будут измеряться при желании несложно составить пропорциональные зависимости с учетом исходных геометрических параметров транспортных каналов.
Размерность проводников также имеет значение. Электрическое сопротивление (R) равно удельному значению для определенного материала (Rуд), умноженному на длину (L) и деленому на соответствующее поперечное сечение (S). Если известен только диаметр, то для круглой жилы можно применить классическую формулу из школьного курса геометрии:
S = (π * d2)/4 = (3,14 * d2)/4.
Длину вычисляют по преобразованному выражению:
L = S * (R/ Rуд).
Эти пропорции демонстрируют, от чего зависит сопротивление.
Из электротехники известно, что полное сопротивление при равных условиях переменному и постоянному току будут отличаться. Касается это также проводов и кабелей. Это вызвано тем, что переменный ток распределяется по сечению неравномерно (поверхностный эффект). Однако для проводов из цветных металлов и с частотой переменного напряжения 50 Гц этот эффект не оказывает слишком большого влияния и им можно пренебречь. Таким образом, при расчете проводников из цветных металлов, их сопротивления переменному и постоянному току принимаются равными.
На практике активное сопротивление медных и алюминиевых проводников рассчитывают по формуле:
Где: l – длина в км, γ – удельная проводимость материала провода м/ом∙мм2, r – активное сопротивление 1 км провода на фазу Ом/км, s – площадь поперечного сечения, мм2.
Величина r, как правило, берется из таблиц справочников.
На активное сопротивление провода влияет и температура окружающей среды. Величину rпри температуре Θ можно определить по формуле:
Где: α – температурный коэффициент сопротивления; r20 – активное сопротивление при температуре 20 С, γ20 – удельная проводимость при температуре в 20 С.
Стальные провода обладают значительно большими активными сопротивлениями, чем аналогичные провода из цветных металлов. Его увеличение обусловлено значительно меньшей величиной удельной проводимости и поверхностным эффектом, который у стальных проводов выражен гораздо более ярко, чем у алюминиевых или медных. Более того, в стальных проводах присутствуют потери активной энергии на вихревые токи и перемагничивание, что в схемах замещения линий учитывают дополнительной составляющей активного сопротивления.
Активное сопротивление стальных проводов (в отличии от проводов из цветных металлов) сильно зависит от величины протекаемого тока, поэтому использовать постоянное значение удельной проводимости при расчетах нельзя.
Активное сопротивление стальных проводов в зависимости от протекающего тока аналитически выразить весьма трудно, поэтому для его определения используют специальные таблицы.
Выше были рассмотрены упрощенные методики, которые надо корректировать с учетом реальных условий. Так, существенное влияние на проводимость материалов оказывает температура. В серийных проводниках (медь, алюминий) значение данного параметра увеличивается в пропорции 0,3-0,5% на каждый градус. В составах на основе угля и электролитах наблюдается обратный эффект – уменьшение сопротивления.
Показанный на рисунке эксперимент можно воспроизвести, понизив температуру металла до «абсолютного нуля» (-273°C). При таком экстремальном охлаждении атомарная решетка фиксируется в стабильном положении.
Это состояние создает идеальные условия для перемещения электронов. Отсутствие препятствий сопровождается минимальными потерями, что объясняет перспективность направления для создания эффективных линий передачи энергии. Пример на рисунке демонстрирует улучшенные эксплуатационные параметры транспортных коммуникаций. В данном случае можно исключить силы трения.
Понятно, что для улучшения экономических показателей необходимо повысить рабочую температуру при сохранении хорошей проводимости. Однако новейшие научные достижения в соответствующей области позволяют рассчитывать на положительный результат в близком будущем.
Следует подчеркнуть! На практике могут понадобится разные технологии вычислений. Например, материал неизвестен. Сложно идентифицировать его по внешним признакам. Для качественного химического лабораторного анализа, кроме соответствующих навыков, необходимо специальное оснащение.
Однако при необходимости нетрудно вывести удельный показатель:
Rуд = R * S /L.
Геометрические параметры измеряют стандартными инструментами (линейкой, штангенциркулем). По типовой схеме измерений с помощью мультиметра уточняют электрическое сопротивление. Для вычисления Rуд пользуются представленной выше формулой. В справочнике выбирают позицию, соответствующую результату расчета. По такой же методике можно определить иные неизвестные значения, например, длину кабеля в подземной трассе.
В реальных расчетах для повышения точности учитывают реактивные компоненты проводников. Например, индуктивность длинной прямой линии определяют по формуле:
И = (m0/2π) * L *(mc * ln(L/r) +1/4m,
где:
При повышении частоты приходится учитывать растекание тока в поверхностной зоне и вихревые изменения.
Представленные теоретические знания пригодятся для расчета и создания реостата – прибора с регулируемым сопротивлением. Они нужны для предотвращения электротравм с применением точного расчета защитных цепей и специализированных автоматов (предохранителей).
Во время испытаний замечено, что при увеличении длины проводника его электрическое сопротивление увеличивается. Для проведения эксперимента, необходимо выбрать заготовки из одинакового материала. К примеру, это может быть проволока из никелина. Для считывания параметров используется амперметр, который подключен к зажимам.
Устанавливая заготовки меньшей длины, отмечено, что ток в цепи увеличивается. Даже на одном изделии можно поиграться с амперметром. Поставив щуп на середину заготовки, к примеру, может отображаться значение 50 ампер.
Интересно! Если отводить его в сторону, к краю, чтобы увеличить дальность держателя, показатель тока будет снижаться. Тоже самое, касается проводников из других материалов.
После простого преобразования основной формулы можно составить корректное выражения для напряжения:
U = I * R.
Источник тока генерирует электричество. Подключенный резистор потребляет энергию с трансформацией в тепло. Для подержания определенной силы тока необходимо установить соответствующее напряжение.
На графиках показаны вольтамперные характеристики разных приборов. Первые два демонстрируют линейные зависимости, в которых изменяется только угол наклона прямой линии (зависимость от электрического сопротивления резистора).
Если подключить полупроводниковый диод, график существенно изменится. По рисунку можно определить малое сопротивление в области положительных значений U. Однако после изменения полярности увеличение отрицательного напряжения не сопровождается аналогичным изменением силы тока. Одностороннюю проводимость, в частности, используют для выпрямления сигналов.
На последнем графике сдвинутая точка перехода нулевого значения силы тока обозначает ЭДС источника питания. Как и в предыдущем примере, небольшой угол по отношению к вертикали показывает малое внутреннее сопротивление АКБ.
Напряжение – это главная движущая сила электричества. Напряжение первично. Фактически это среда, в которой протекают разнообразные процессы, связанные с электрическим током. Важнейшей является связь электрического тока с электромагнитным полем. А его параметры, в свою очередь, определяются не только напряжением, но и пространственно-геометрическими характеристиками проводника.
Даже в том случае, когда проводник – это прямой отрезок проволоки в составе электрической цепи, его положение в пространстве при достаточно высоких частотах напряжения будет заметно влиять на величину его сопротивления. Это связано с тем, что в этих условиях проявляются его индуктивность и емкость, существующие лишь при переменном напряжении. Эти параметры проводника именуются реактивным сопротивлением, и также приводят к потерям электроэнергии.
Следовательно, если проводник находится под воздействием переменного напряжения, его сопротивление также зависит как от частоты этого напряжения, так и от его индуктивно-емкостных параметров.
Активное СП при этом остается в силе. А сопротивление проводника в целом именуется импедансом. Его принято обозначать буквой Z и рассчитывать с использованием комплексных чисел. Это довольно-таки специфические расчеты, которыми не стоит утомлять читателя нашей статьи. Но чтобы читатель в этом утверждении не усомнился, далее приведем формулу, по которой в общем случае рассчитывается импеданс:
Формула
Форма сигнала токов зависит от работы источника напряжения и сопротивления среды, через которую проходит сигнал. Чаще всего на практике домашнему мастеру приходится сталкиваться со следующим видами:
Чаще всего встречается синусоидальный или переменный ток: им питаются все наши приборы.
Напряжение – это физическая величина, которая характеризует электрическое поле. Иными словами, оно показывает, какую работу оно совершает при перемещении одного положительного заряда на определённое расстояние.
Показатель напряжения на вольтметре
За единицу напряжения в международной системе принимается такой показатель на концах проводника, при котором заряд в 1 Кл совершает работу в 1 Дж для перемещения его по этому проводнику. Общепринятой единицей измерения напряжения считается 1 В – Вольт.
Важно! Работа измеряется в Джоулях, заряды в Кулонах, а напряжение в Вольтах, следовательно, 1 Вольт равняется 1 Джоулю, деленному на 1 Кулон. https://www.youtube.com/embed/AoQxuSGlFMQ
Удельным сопротивлением проводника называется физический вид величины, который показывает, что материал может препятствовать электротоку. По-другому, это такое сопротивление металлов, которое оказывает материал с единичным сечением сопротивление протекающему току. Отличается удельное сопротивление постоянному току тем, что оно вызывается током на проводник. Что касается переменного тока, то он появляется в проводнике под действием вихревого поля.
Важно также уточнить, что собой представляет удельная электрическая проводимость. Электропроводимость — это величина, которая обратна сопротивлению и называется электропроводностью
Это показатель, показывающий меру проводимости силы электротока.
Обратите внимание! Чем больше он, тем лучше способен проводник проводить электричество. Общее определение из учебного пособия
Но и постоянный ток не так прост, как представляется по некоторым опытам. Все дело в его силе. Известно, что площадь поперечного сечения напрямую связана с силой тока. Но эта закономерность применима не всегда. С определенных значений силы ток все больше устремляется к поверхности проводника, что называется вытеснением тока. По этой причине сопротивление току большой силы меньше у плоских и трубчатых проводников.
Распределение тока по поперечнику проводника
Еще лучший результат получается при покрытии серебром. Аналогично проявляются и токи высокой частоты. Для них поверхностный эффект закономерен так же, как и для постоянного тока большой силы. Но и механическая сила, воздействующая на проводник, способна повлиять на его сопротивление. И это неудивительно, поскольку деформации влияют на распределение частиц, которые тормозят электроны.
Этот принцип заложен в основу тензометрии, без которой сегодня невозможно представить машиностроение и другие отрасли промышленности, где важна прочность материалов. Все перечисленные причины, от которых зависит СП, по-разному проявляются у различных материалов. Но для прикладного использования взаимосвязи сопротивления с теми или иными воздействиями разработаны специальные сплавы и химические соединения.
Распределение тока по поперечнику проводника
Но в любом случае сопротивление измеряется в Омах и долях Ома, в том числе и кратных 1000, то есть килоом, мегаом. Больше нескольких единиц мегаом сопротивление, как правило, не бывает. Мы постарались показать читателям несколько причин, обуславливающих СП. Надеемся, что полученные знания помогут успешно решить существующие задачи.
При организации электропроводки и крепления кабелей все чаще применяются специальные средства, которые позволяют улучшить качество и…
В чём преимущества стальных сгонов и как они применяются Стальные сгоны — это один из…
Железобетонные изделия — это основа, на которой держатся современные здания и мосты, жилые кварталы и…
Модульные офисы продаж — это находка для компаний, которые ценят скорость и удобство. Компактные, мобильные…
Погрузочные рампы играют ключевую роль в бизнесе, связанном с логистикой, складами и транспортировкой товаров. Это…
Модульные здания с каждым годом привлекают все больше внимания благодаря своим преимуществам. Одним из главных…
This website uses cookies.