Частотные преобразователи нашли широкое применение в самых различных производственных нишах и оборудовании. Столь высокий спрос на подобные устройства обусловлен следующими преимуществами их использования:
Частотные преобразователи являются оптимальным решением для организации самых различных производственных процессов и отладки рабочего оборудования, на базе которого используются электромоторы.
Промежуточная цепь выполняет роль своеобразного хранилища, из которого электродвигатель получает энергию через инвертор. В зависимости от комбинации инвертора и выпрямителя промежуточная цепь может иметь одну из следующих формаций:
Частотный электропривод имеет ряд схем, в состав которых входят транзистор либо тиристор. Базовым элементом электронной схемы является микропроцессор, отвечающий за работу дополнительных элементов цепи и обеспечивающий выполнение большого количества дополнительных задач.
Преобразователь частоты представляет собой группу выпрямителей, а также инверторов, трансформирующих переменные токи в постоянные.
Однофазный частотный преобразователь – является высокотехнологичным устройством. Основная его задача – преобразования рабочего напряжения сети в бытовое (220 В). При такой трансформации совершается импульс напряжения в нужных частотах (1 – 1000) Гц.
Частотный преобразователь для электродвигателя создает напряжения, с заданными параметрами. Преобразователь частоты работает следующим образом:
Роль силовых элементов зачастую выполняют IGВТ-транзисторы. Изменяя частоту можно изменять скорость вращения электродвигателя (М).
Преобразователь частоты делится на две большие разновидности:
С непосредственной связью.
Их отличительная черта – выпрямитель тиристорный, где попеременно открываются и закрываются отдельные тиристоры и поочередно подключаются к статорной катушке.
Рис. 2 Графическое изображение напряжения преобразователя
Выходное напряжение синусоиды образует пилообразное очертание с частотой около 1 – 40 Гц. Область применения такого рода преобразователей считается ограниченной из-за того, что незапираемым тиристорам необходимы более сложные схемы управления. Что и несет за собой более высокую стоимость оборудования.
Такие преобразователи частоты работающие с высокими величинами токов и напряжения имеют коэффициент полезного действия порядка 95-98%. Также высоковольтные частотные преобразователи имеют более высокую стоимость, по сравнению с низковольтными.
Если сравнивать тиристорный преобразователь с транзисторным электроприводом, имеющих аналогичную мощность, то второй прибор будет иметь значительно меньшие габариты, меньший вес и будет отличаться более надежной работой.
С выраженным звеном постоянного тока.
Данная разновидность датчиков гораздо чаще встречается в современных устройствах, целью которых является регулировка частоты.
Преобразование происходит в 2 этапа:
Коэффициент полезного действия при такой трансформации уменьшается, при этом увеличиваются размеры устройства. Синусоидальный сигнал обеспечивается самостоятельным инвертором напряжения и тока.
Принцип работы векторного управления заключается в следующем: при нём оказывается воздействие на магнитный поток, изменяя направление его «пространственного вектора» и регулирующий роторную частоту поля.
Создать рабочий алгоритм частотного преобразователя с векторным управлением можно при помощи двух способов:
Бессенсорное управление.
Осуществляется за счёт назначения зависимостей чередования между последовательностями широтно-импульсных модуляций инвертора для предварительно составленных алгоритмов. Регуляция размера амплитуды и выходной частоты, которую имеет напряжение, осуществляется в соответствии со скольжением и нагрузочным током, но обратная связь от роторной вращательной скорости не учитывается.
Потокорегулирование.
Рабочие токи устройства регулируются. При этом они раскладываются на активный и реактивный компонент. Это облегчает возможность внесения корректирующих изменений в рабочий процесс (изменение амплитуд, частот, векторных углов, которые имеет напряжение на выходе).
В целом, схема векторного управления более прочих подходит для динамической регулировки вращающегося момента трёхфазного асинхронного двигателя.
В большинстве случаев устройство частотного преобразователя базируется на схеме двойного преобразования. Агрегаты включают: звено постоянного тока (неуправляемый выпрямитель), силовой импульсный инвертор и управляющую систему. В свою очередь, звено постоянного тока включает неуправляемый выпрямитель и фильтр. Здесь переменное напряжение сети преобразуется в напряжение постоянного тока. В силовой трехфазный импульсный инвертор входит шесть транзисторных ключей и каждая обмотка двигателя подключается через определенный ключ к положительному/отрицательному выводам выпрямителя. Посредством инвертора выполняется преобразование выпрямленного напряжения в трехфазную переменную величину нужной частоты и амплитуды, прикладываемую к обмоткам статора электрического двигателя.
В роли ключей используются силовые IGBT-транзисторы. Если сравнивать их с тиристорами, то первые имеют более высокую частоту переключения, что дает возможность вырабатывать выходной сигнал синусоидальной формы при минимальных искажениях. Информация о том, как подключить и настроить частотный преобразователь будет рассматриваться ниже. В данном разделе приведено только общее устройство преобразователя частоты для ознакомления.
Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:
Следует выделить несколько основных параметров, на которые нужно обращать внимание при выборе частотного преобразователя:
Мощность. Данный параметр частотного преобразователя должен соответствовать мощности двигателя, с которым он будет использоваться. Следует выбирать устройство, мощность которого будет соответствовать номинальному току. Покупать частотный преобразователь с очень завышенными характеристиками попросту бессмысленно, ведь он обойдется намного дороже, да и с наладкой могут возникнуть проблемы.
Тип нагрузки. Тут все зависит от того, как осуществляется работа агрегата, к которому будет подключен частотный преобразователь. Например, при вентиляторных нагрузках не бывает перегрузок, а в случае с работой пресса – ток может превышать номинальные значения на 60 и более процентов. Соответственно, необходимо учитывать это при выборе и оставлять определенный запас «хода».
Тип охлаждения двигателя. Двигатели могут оснащаться принудительными системами охлаждения либо иметь самообдув. Во втором случае к крыльчатке ротора прикрепляются специальные лопасти, которые вращаются вместе с ним и обдувают двигатель. Соответственно, нормальная степень обдува в данном случае напрямую зависит от частоты вращения. Если двигатель продолжительное время будет работать на пониженной частоте, то это может привести к перегреву. Соответственно, лучше позаботиться о дополнительном охлаждении, если изменение частоты будет больше 10% от номинального значения.
Входное напряжение. Данный показатель определяет, при каком напряжении способен работать преобразователь частот. Тут мало знать, что в сети напряжение обычно составляет около 380 В. Часто происходят скачки в диапазоне +-30%. Кроме того, в сетях, куда подключено большое количество силового оборудования, часто случаются выбросы в 1 кВ. Соответственно, чем шире диапазон рабочих напряжений у преобразователя частот, тем надежнее он будет работать.
Способ торможения. Остановка двигателя может осуществляться либо инверторным мостом, либо электродинамическим способом. Первый метод больше подходит для точного и быстрого торможения, а второй – в механизмах с частым торможением либо при необходимости постепенной остановки
На это обязательно следует обратить внимание.
Окружающая среда и защита. Обычно в паспорте преобразователя частоты указаны условия, при которых должно использоваться устройство
Например, влагозащищенные модели соответствуют стандарту IP 54 – они устойчивы к воздействию влаги и могут использоваться в помещениях с паровыми испарениями и повышенной влажностью.
Тип управления и интерфейсы. Обязательно необходимо обратить внимание на наличие подходящих для подключения разъемов, а также возможностей правления – некоторые модели предназначены для монтажа на месте, а другие – в отдельной рубке управления.
Если вы никогда не работали с преобразователями частоты, лучше обратиться за консультацией к специалисту.
Если рассмотреть монтаж преобразователя частоты схематически, то вес процесс сводиться к соединению контактов самого устройства, электродвигателя и управляющего блока-предохранителя. Достаточно соединить провода всех элементом, подключить двигатель к сети и запустить его.
На первый взгляд, ничего сложного в этом нет, но, на самом деле, процедура монтажа имеет некоторые свои нюансы:
Очень важно, чтобы в цепи между самим частотником и источником питания был установлен предохранитель. Он позволит своевременно отключать устройства в случае перепадов напряжения, сохраняя их работоспособность
Примечательно, что при подключении к трехфазной сети, необходимо, чтобы сам предохранитель также был трехфазным, но имел общий рычаг для отключения. Это даст возможность отключать питание сразу на всех фазах даже, если только на одной случилось короткое замыкание или перегрузка. Если преобразователь подключается к однофазной сети, то и предохранитель должен быть однофазным. В данном случае при расчетах необходимо учитывать ток только одной фазы, но умноженный на 3. Всегда стоит помнить, что в инструкции практически к любому преобразователю указаны требования и нормы по его установке. С ними необходимо ознакомиться еще до начала работ.
Фазовые выходы частотного преобразователя подключаются к контактам самого электродвигателя. При этом в зависимости от напряжения частотника обмотки двигателя могут иметь формацию «звезда» или «треугольник». Обычно на корпусе двигателя указано два значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются «звездой», если большему – «треугольником». Вся эта информация обычно пропечатывается в инструкции.
В комплекте практически с каждым преобразователем частоты прилагается выносной пульт управления. Он не является обязательным элементов цепи, ведь на самом устройстве также есть свои элементы управления, но позволяют существенно упростить работу с оборудованием. Пульт можно монтировать на любом расстоянии от частотника. Обычно делается это следующим образом: преобразователи частоты, которые имеют низкую степень защиты располагаются подальше от двигателя, а сам пульт выносится непосредственно к рабочему месту около оборудования.
Не менее важным этапом установки частотного преобразователя является его тестовый запуск. Он осуществляет по следующей схеме:
Если при тестовом запуске никаких проблем обнаружено не было, значит, вы сделали все правильно и система может включаться в рабочий процесс.
Принцип действия частотного преобразователя базируется на особенностях работы асинхронного электродвигателя. В электрическом двигателе такого типа частота вращения магнитного поля (величина n1) зависит от частоты напряжения питающей сети. В случае, когда питание обмотки статора выполняется трехфазным напряжением, имеющим частоту f, генерируется вращающееся магнитное поле, скорость вращения которого определяется по нижеприведенной формуле:
, где
р – это число пар статорных полюсов.
Переход от скорости вращения поля ω1, которая измеряется в радианах, к частоте вращения n1 (об/мин), выполняется согласно формуле:
, где
60 – это коэффициент пересчета размерности.
Если подставить в это уравнение скорость вращения поля ω1, получим следующее равенство:
Отсюда несложно заключить, что показатель частоты вращения ротора асинхронного электродвигателя зависит от частоты напряжения питающей сети. Именно эта зависимость и отображает всю суть метода частотного регулирования. Частотный преобразователь для электродвигателя изменяет частоту напряжения питания на входе и, как следствие, регулирует частоту вращения ротора. Подчеркнем, что выходная частота в современных частотниках изменяется в широком диапазоне, а, значит, эта величина может быть как ниже, так и выше частоты питающей сети.
Частотник для электродвигателя, принцип работы силовой части которого лег в основу нижеприведенной классификации, соответствует следующим параметрам:
По историческим меркам первыми появились частотные преобразователи с непосредственной связью. В этих агрегатах силовая часть представляет собой управляемый выпрямитель, выполненный на тиристорах. Управляющий узел в порядке очереди отпирает группы тиристоров, тем самым формируя выходной сигнал. Сегодня этот метод преобразования в новых разработках не используется.
Как работает преобразователь этого класса? Здесь используется двойное преобразование электроэнергии: входное синусоидальное напряжение (величины L1, L2, L3 на рисунке) с постоянной амплитудой/частотой выпрямляется в выпрямительном блоке (BR), фильтруется и сглаживается в блоке фильтрации (ВF), как результат, — получаем постоянное напряжение. Представленный узел носит название – звено постоянного тока.
решение задач формирования синусоидального переменного напряжения с регулируемой частотой отвечает блок преобразования (BD). Роль электронных ключей, формирующих выходной сигнал, выполняют биполярные транзисторы с изолированным затвором IGВТ. Процесс управления вышеперечисленными блоками происходит согласно заблаговременно запрограммированному алгоритму микропроцессорным модулем или логическим блоком (BL).
Схема ниже показывает, что частотные преобразователи могут быть запитаны от внешнего звена постоянного тока. При этом защита частотника выполняется посредством быстродействующих предохранителей
Важно отметить, что использовать контакторы для питания от звена постоянного тока не рекомендуется. Дело в том, что при контакторной коммутации возникает повышенный зарядный ток и предохранители могут выгореть
В большинстве случаев устройство частотного преобразователя базируется на схеме двойного преобразования. Агрегаты включают: звено постоянного тока (неуправляемый выпрямитель), силовой импульсный инвертор и управляющую систему. В свою очередь, звено постоянного тока включает неуправляемый выпрямитель и фильтр. Здесь переменное напряжение сети преобразуется в напряжение постоянного тока. В силовой трехфазный импульсный инвертор входит шесть транзисторных ключей и каждая обмотка двигателя подключается через определенный ключ к положительному/отрицательному выводам выпрямителя. Посредством инвертора выполняется преобразование выпрямленного напряжения в трехфазную переменную величину нужной частоты и амплитуды, прикладываемую к обмоткам статора электрического двигателя.
В роли ключей используются силовые IGBT-транзисторы. Если сравнивать их с тиристорами, то первые имеют более высокую частоту переключения, что дает возможность вырабатывать выходной сигнал синусоидальной формы при минимальных искажениях. Информация о том, как подключить и настроить частотный преобразователь будет рассматриваться ниже. В данном разделе приведено только общее устройство преобразователя частоты для ознакомления.
Перед тем, как выбрать частотный преобразователь,проверяют электрическую совместимость с двигателем и нагрузочной способностью (мощностью).
Рис. №1. Структурная схема работы системы насосных агрегатов от преобразователя частоты VFD.
При работе преобразователя частоты с одним двигателем выбор проводят в зависимости от паспортных характеристик. При выборе учитываются такие показатели, как:
Время разгона двигателя при пусковом токе 150% составляет 120% для преобразователей, специализирующихся в насосных агрегатах, от номинального ПЧ обычно не должно превышать 60сек.
Рис. №2. Формула расчета полной пусковой мощности.
Ток потребления двигателем от преобразователя при сетевом напряжении 220/380В рассчитывают по формуле:
Рис. №3. Расчет механических характеристик двигателя.
Рис. №4. Таблица неравенств, которые необходимо соблюдать при выборе ПЧ для работы одного частотника с несколькими двигателями.
По типу питающего напряжения преобразователи частоты делятся на следующие виды:
По типу управляемого электрического двигателя подключенного к преобразователю, устройства разработаны для управления:
По области применения типы частотных преобразователей будут следующими:
Все приведенные выше типы частотных преобразователей адаптированы для определенных условий эксплуатации, и чем сложнее эти условия, тем внимательнее следует подходить к подбору соответствующего оборудования. Так, современный высокочастотный преобразователь частоты позволяет не только организовывать наиболее энергоэффективные алгоритмы управления технологическими процессами, но и увеличивать срок службы двигателей и прочих включенных в технологический процесс элементов.
Если у Вас возникли сложности при выборе, мы поможем подобрать преобразователь частотно аналоговый, общепромышленный и другие типы преобразователей частоты, оптимально подходящие под конкретные условия использования.
Освещение спортивных площадок — это не просто лампы на столбах. Это ключ к комфортной игре,…
Работа с бетоном — это всегда задача, требующая специализированного оборудования. Одним из таких инструментов является…
Лебедки серии MTM — это настоящие универсалы в мире подъёмного оборудования. Они незаменимы там, где…
Вечерний двор, освещенный мягким белым светом, или фасад, сверкающий в ночи, словно ожившая открытка, —…
При организации электропроводки и крепления кабелей все чаще применяются специальные средства, которые позволяют улучшить качество и…
В чём преимущества стальных сгонов и как они применяются Стальные сгоны — это один из…
This website uses cookies.